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Abstract 
For any crystal structure that can be viewed as a low-symmetry distortion of some higher-symmetry 
parent structure, one can represent the details of the distorted structure with a list of distortion-mode 
amplitudes rather than the traditional list of xyz atomic coordinates.  After importing mode definitions 
from the ISODISPLACE software, TOPAS Academic can now directly refine structural distortion-mode 
amplitudes.  In this article, we demonstrate that the distortion-mode basis is well-suited to a Rietveld 
refinement of the room-temperature structure of WO3, which has 24 displacive atomic-coordinate degrees 
of freedom.  Only five distortion-mode amplitudes are needed to capture the essential features of this 
structure. 

1.0  Introduction 
The details of a subtle superstructural distortion are often very difficult to extract from powder-diffraction 
data.  The added structural complexity of the distorted structure is rarely compensated by the extra 
information in the low-symmetry powder pattern, which may include only limited peak broadening or 
splitting and a handful of weak superlattice reflections.  This is especially true with data from lab 
instruments.  A typical approach to this type of problem involves iterations over four basic steps: (1) use 
intuition and experience to select a promising distortion model, (2) transform the parent structural 
description into the new setting, (3) establish a complicated matrix of bond and/or angle constraints that 
reduce complexity by allowing only specific geometric distortion patterns, and (4) refine the model 
against the experimental pattern.  With a little luck, a reasonable number of iterations will yield one 
model that is clearly better than the others.  This process is almost always very time consuming, though 
the pain or pleasure derived largely depends on your interests and objectives!   

In this article, we demonstrate that identifying and refining a superstructural distortion can be 
dramatically simplified by new Rietveld-refinement capabilities that take full advantage of group-
theoretical distortion-mode analysis.  The combined use of ISODISPLACE and TOPAS Academic 
eliminates the need for manual structure transformations and many structural constraints, while also 
streamlining the process of exploring and testing candidate models. 

2.0  The distortion-mode basis 
The free energy of any crystalline material can be expanded in terms of the order parameters of the 
irreducible representations of the parent space-group symmetry.1  Most real phase transitions that produce 
distortions are energetically driven by a relatively small number of these order parameters (often just 
one).  This symmetry-motivated basis of order parameters, which we refer to as the distortion-mode basis, 
is the most natural basis for studying structural distortions because is allows the essence of most 
distortions to be captured by the smallest possible number of refinable parameters.  As used here, the term 
"distortion" could refer to any type of physical order parameter, not just an atomic displacement.  In the 
current context, however, we will primarily be discussing atomic displacements, strains, and site 
occupancies. 



A superstructural distortion breaks some of the symmetries of the parent crystal structure.  Those parent 
symmetries that remain in the distorted structure comprise its distortion symmetry2 or isotropy subgroup3 
(we use these two terms interchangeably).  Thus, the distortion symmetry of a distorted structure is 
precisely its space-group symmetry, which can be identified by its combination of space-group type, 
supercell basis and supercell origin.  Because the space-group symmetry of a specific structure includes 
both the symmetry elements of the space-group type and their actual locations within that structure, both 
the basis and the origin of the supercell are essential information. 

Every superstructural distortion is associated with a k-point (or set of k-points) in the Brillioun zone, 
which is also the location where superlattice reflections will appear in the corresponding diffraction 
pattern.  For a given k-point, the parent space group has a finite number of irreducible representations 
(irreps), each of which maps its symmetry elements onto an irreducible group of matrices.  The dimension 
of an irrep refers to the dimension of its matrices.  The group theory of irreps and irrep matrices is 
addressed in detail by Bradley and Cracknell,4 though one does not need to be acquainted with irrep 
theory to follow the concepts presented here.  Loosely speaking, each irrep corresponds to a specific set 
of parent symmetries that can be broken, which in turn determines which subgroups of parent symmetries 
might be preserved.  A physical distortion that breaks only the symmetries associated with a specific irrep 
is said to be an order parameter of that irrep. 

An order parameter of a multidimensional irrep can belong to any one of several different order 
parameter directions (OPDs) in representation space, each of which breaks only a special subset of the 
symmetries that the irrep is able to break.  The general OPD of an irrep (also called the kernel) breaks as 
much symmetry as possible.  The special OPDs, on the other hand, break less symmetry than the kernel, 
and result in distortion symmetries that are both subgroups of the parent symmetry and supergroups of the 
kernel symmetry.  For a given k-point and irrep, each available OPD leads to a different distortion 
symmetry.  If (a,b,c,d) is the general OPD of some four-dimensional irrep, then (a,-a,b,b) would be called 
a special OPD of that irrep.  The OPDs of an irrep are somewhat analogous to the Wyckoff sites of a 
space group – just as an atom at the special (x,0,½) Wyckoff position has fewer degrees of freedom than 
an atom at the general (x,y,z) position, a physical order parameter that lies along the special (a,-a,b,b) 
OPD will have fewer structural degrees of freedom than an order parameter that lies along the general 
(a,b,c,d) OPD.  We refer to an OPD's variable parameters as branches, and refer to an order parameter's 
structural degrees of freedom as distortion modes.  Thus, any order parameter with direction (a,-a,b,b) 
will have two distortion modes: an "a" branch mode and a "b" branch mode.   

While irreps and OPDs are purely mathematical abstractions, their order parameters have real physical 
meaning.  A specific distortion symmetry may accommodate many different types of physical order 
parameters (e.g. strains, displacements, occupancies, etc.), and many distinct order parameters of the 
same type.  Each order parameter will have as many modes as there are branches of the OPD.  Each mode 
is associated with one degree of freedom that has zero amplitude in the undistorted parent structure.  
Though crystal strain modes (i.e. unit cell parameter changes) are macroscopic, an occupancy mode or a 
displacive mode is microscopic in nature, and must be associated with a unique atom of the parent 
structure.  Thus, a single microscopic mode may affect many supercell atoms, but only one unique parent 
atom.  For a displacive distortion, there will be as many displacive modes as there are variable atomic-
coordinate parameters, all of which will be linearly independent, so that any superstructure that can be 
described with atomic coordinates can be equally-well described with distortion-mode amplitudes.  
Atomic coordinates and displacive distortion-modes comprise two equivalent bases of the vector space of 
all displacive distortions, and are related by a linear transformation.5 

The traditional atomic-coordinate description of a given superstructure is entirely independent of any 
other structure that it may be related to.  The distortion-mode description, on the other hand, is a 
decomposition of the superstructure into the distortion modes of a higher-symmetry parent structure.  In 
this sense, the two bases are quite different, and provide complimentary views of a structure.  The 
distortion-mode basis is considerably more convenient for some applications.  In the examples that 



follow, we will demonstrate that the distortion-mode basis is the most natural basis for exploring phase 
transitions and refining structural distortions. 

3.0  The WO3 phase diagram 
The structure of WO3, at first glance, is remarkably simple, consisting of a three-dimensional network of 
corner-sharing WO6/2 octahedra with a ReO3-like connectivity.  In reality, WO3 has a very complicated 
structural phase diagram6-10 and undergoes at least 6 transitions upon cooling from 1000°C.  These 
transitions involve off-centre distortions of W within the WO6/2 octahedra, as commonly observed for d0 
transition metal ions, and coupled tilting of the WO6/2 octahedra, as commonly observed in perovskite-
related structures.  Howard et al.6 provide a good review the seven known polymorphs of WO3 (see Table 
1).  These structures can each be described as distortions of a hypothetical cubic ( mPm3 ) parent phase 
that places W at a(0,0,0) and O at d(½,0,0).  The irreps of mPm3  that are relevant to the WO3 phase 
diagram are located at the Γ[0,0,0], X[½,0,0], M[½,½,0] and R[½,½,½] points.  In describing the order 
parameters of these irreps, we will refer to the a, b and c axes of the cubic parent structure as d1, d2 and 
d3, respectively. 

Table 1:  Summary of the ambient pressure WO3 phase diagram.  For each phase, we include the 
temperature range, space-group, supercell shape relative to cubic parent, literature references, Glazer 
tilt-pattern symbol,11,12 number p of refinable atomic-coordinate parameters, number n of distortion-
modes with relatively-large amplitudes, and selected irreps/OPDs of the cubic parent symmetry that are 
relevant to the distortion.  Because the −

3M , +
4R , −

5X  and +
3M  irreps are consistently important across 

the phase diagram, they are listed wherever they are capable of coupling to a distortion, even when they 
have no clearly-active (i.e. large-amplitude) modes.  Irreps that are not essential to the distortion 
symmetry are separated from the others by a semicolon, and order-parameter branches giving rise to 
clearly-active modes are indicated with a bold-face font.  

Temp. (°C) S.G. Supercell Refs. Tilts p(n) Important irreps and order parameter directions 
above 900 P4/nmm 122 ××  6 a0a0c0 2(1) −

3M (a,0,0) 
790 to 900 P4/nnc 222 ××  6,7 a0a0c− 3(2) −

3M (a,0,0)⊕ +
4R (a,0,0) 

760 to 790 P21/c 222 ××  6 a−a−c− 12(3) −
3M (a,0,0)⊕ +

4R (a,b,b);  −
5X (0,0,a,0,0,0) 

400 to 760 Pbcn 222 ××  6,7 a0b+c− 12(4) −
3M (a,b,0)⊕ +

4R (a,0,0)⊕ −
5X (0,0,0,0,a,-a); +

3M (0,0,a) 
17 to 400 P21/n 222 ××  6,7 a−b+c− 24(5) −

3M (a,b,0)⊕ +
4R (a,b,0)⊕ −

5X (0,0,a,a,b,-b); +
3M (0,0,a) 

−40 to 17 P 1  222 ××  8,9 a−b−c− 48(6) −
3M (a,b,0)⊕ +

4R (a,b,c)⊕ −
5X (0,0,a,b,c,-d); +

3M (0,0,a) 
below −40 Pc 222 ××  8,10 a−b−c− 24(6) −

3M (a,0,0)⊕ +
4R (a,b,b)⊕ −Γ4 (a,a,b);  −

5X (0,0,a,0,0,0) 
 

The most important distortion modes induced by +
4R , +

3M  or −Γ4  all involve oxygen displacements, 
whereas those induced by −

3M  or −
5X  involve tungsten displacements.  These irreps also induce other less 

important (i.e. small-amplitude) modes that are not discussed in detail.  Note that the +
4R  octahedral-tilt 

modes produce anti-phase tilt arrangements, meaning that adjacent octahedra along the tilt axis rotate out 
of phase, whereas the +

3M  octahedral-tilt modes produce in-phase tilt arrangements. 

An −
3M  pattern of tungsten displacements directed parallel to the tetragonal axis (d3) is initially present at 

high temperatures, and corresponds to the off-center shift expected for a d0 cation like W6+.  These are 
followed by the emergence of an +

4R  tilt (i.e. rotation) of the WO6/2 octahedra around the tetragonal (d3) 
axis below 900°C.  These two features persist in all of the lower-symmetry distortions.  Below 790°C, a 
monoclinic distortion with unique axis parallel to d1+d2 emerges, which involves a low-amplitude −

5X  
mode of tungsten-displacements along the same direction, and a second +

4R  octahedral tilt around d1−d2.  



Below 760°C, the +
4R  octahedral tilt around d1−d2 disappears, giving rise to an orthorhombic structure 

that includes −
5X  tungsten displacements along d2 and an +

3M  octahedral tilt around this same axis.  
Below 400°C, a second +

4R  octahedral tilt appears, but around d1 this time, giving rise to a different 
monoclinic structure (same space group as above, but different lattice orientation) with special axis 
parallel to d2.  A third +

4R  octahedral tilt then develops around d2 below 17°C to form a triclinic structure.  
Below −40°C, yet another monoclinic phase emerges, with lattice orientation and displacive modes very 
similar to those of the 760-790°C phase, except for the new appearance of ferroelectric −Γ4  oxygen 
displacements parallel to d3.   

The group-subgroup relationships that exist among the distortion symmetries in Table 1 are as follows.  

mPm3  → P4/nmm → P4/nnc → Pbcn → P21/n → P 1  

P21/c → Pc 

For any pair of structures that have a group-subgroup symmetry relationship, it is possible to decompose 
the lower-symmetry structure into distortion-modes of the higher-symmetry structure.  For two adjacent 
phases in the diagram, such a decomposition can reveal the primary and secondary order parameters 
responsible for the phase transition that separates them.  In Table 1, we instead prefer to decompose all of 
the low-symmetry structures into the modes of the hypothetical high-temperature cubic structure, which  
is not actually observed in nature.  We do this because we can, and because it provides a more meaningful 
picture of the entire phase diagram.  The cubic structure proves to be a natural reference point for each of 
the low-symmetry phases. 

In summary, the relatively small number of large-amplitude distortion modes for each phase emphasizes 
the importance of the distortion-mode basis.  Especially for the lowest-symmetry phases, the number of 
large distortion-mode amplitudes is far smaller than the total number.  We find it interesting that most of 
the active order parameter branches in Table 1 give rise to only one large-amplitude distortion mode. 

4.0  Distortion-mode analysis of the P21/n phase of WO3 

4.1 Mode decomposition 
WO3 has a monoclinic phase that exists between 17°C and 400°C.  The structural parameters of this phase 
at room temperature are listed in Table 2.  We will use the ISODISPLACE software tool2 here to 
transform the P21/n structure of WO3 onto the distortion-mode basis in order to visualize and quantify the 
displacive modes that give rise to this distortion.  ISODISPLACE provides a variety of intuitive methods 
for exploring distortion symmetries and distortion modes.  We invite the reader to treat this section as a 
tutorial by accessing the ISODISPLACE website and following along.   

To enter the cubic parent structure, follow the "Enter structure manually" link on the main page, and then 
type the space group ( mPm3 ), lattice parameter (a = 3.81 Å) and atom coordinates, W(0,0,0) and 
O(½,0,0), into the web forms provided.  The "View Structure" button on the next page will open a Java 
applet window that allows you to interactively view the parent structure that you have created.  If the 
structure looks good, close the applet window and use the "Make CIF file" button to save the structure to 
a file named wo3_cubic.cif.  Then go back to the ISODISPLACE home page and repeat the structure-
entry process for the monoclinic P21/n structure in Table 2, following the same procedure as before 
except that you need to choose "Monoclinic cell choice 2" in the section called "Space group 
preferences".  After visually checking the structure in the viewer applet, save it to a file called 
wo3_300k.cif.  Alternatively, you can download the monoclinic structure from ISODISPLACE website 
via the following link: http://stokes.byu.edu/wo3_300k.cif. 



Table 2:  The P21/n structure of WO3 at room temperature from Woodward et al.8:  a = 7.30084(7), b = 
7.53889(7), c = 7.68962(8), α = 90, β = 90.892(1), γ = 90. 

W1 0.2513(6) 0.0277(7) 0.2865(5) O3 0.2821(4) 0.2602(7) 0.2870(4)
W2 0.2481(6) 0.0342(6) 0.7815(5) O4 0.2107(4) 0.2602(8) 0.7310(4)
O1 0.0008(6) 0.0366(8) 0.2116(5) O5 0.2859(6) 0.0390(6) 0.0065(5)
O2 0.9973(6) 0.4632(8) 0.2164(5) O6 0.2849(6) 0.4850(5) 0.9922(4)

 

ISODISPLACE provides four methods of generating distortions.  We will start with the mode-
decomposition tool (Method 4), which assumes that you already have .cif files containing the parent and 
distorted structures, and are ready to perform an automatic distortion-mode analysis.  Go back to the main 
page, select "Upload parent structure from a CIF file", browse to your cubic parent structure 
(wo3_cubic.cif file) and upload it.  Choose the "Monoclinic cell choice 2" option, a setting that will still 
be in effect later when you need it.  This brings you to the "search" page (Figure 1).  Scroll down to 
"Method 4" and upload your distorted structure file (wo3_300k.cif).   

Because the distorted structure has a 2×2×2 supercell relative to the parent cell, enter ((2,0,0), (0,2,0), 
(0,0,2)) as the relative supercell basis.  This transformation matrix is defined according to p

jij
s
i aba vv ∑= , 

Figure 1: The ISODISPLACE search page, which contains a description of the parent structure and 
a starting point for generating structural distortions.  



where ap and as are the absolute parent and supercell bases.  When the decomposition calculation is 
finished, which may take a few seconds, the "distortion" page (Figure 2a) should open in a new window, 
which contains a summary of the parent structure at the top, followed by a description of the distortion 
symmetry.  The basis, which you entered manually, and the space group type, which comes from the 
structure file, should be as expected.  The supercell origin turns out to be at (½,0,½) in parent-cell 
coordinates. The size of the primitive unit cell (relative to that of the cubic parent) is indicated as "s=8".  
The index of the isotropy subgroup is indicated as "i=96", which means that parent structure has 96 
symmetry elements for every symmetry element in the distorted structure – a very substantial lowering of 
the symmetry.   

 

Figure 2:  (a) Excerpt from the ISODISPLACE distortion page, which contains a description of 
the distortion symmetry, and a list of the distortion modes and their amplitudes.  (b) Histogram 
of displacement-mode amplitudes (in Å) from the distortion page of P21/n WO3. (c) Histogram 
of the corresponding fractional atomic-coordinate shifts. 

(a)

(b) (c)



The distortion page (Figure 2a) contains a list of all of the irreps capable of contributing to the specified 
distortion symmetry, along with the individual distortion modes induced by each irrep.  Note that 
ISODISPLACE only computes distortion modes associated with three types of order parameters: strains, 
atomic displacements, and occupancy-related orderings.  Irreps that don't induce these order parameter 
types (but might induce some other kind of order parameter) are grouped together at the bottom of the list.  
When multiple irreps contribute to a distortion, we say that the irreps are coupled, or that their order 
parameters are coupled.  Coupled irreps tend to result in lower symmetry and greater structural 
complexity than individual irreps.  To the right of each irrep/OPD in the list, there is a description of the 
distortion symmetry that would result if that irrep/OPD were to act alone without any coupling. 

Most importantly, you can now see exactly how much of each mode couples into the total distortion.   
ISODISPLACE defines the amplitude of a displacive mode to be the magnitude (in Å) of the largest 
atomic displacement that it produces.  Individual distortion modes are identified with unique labels of the 
form mPm3 [½,½,½] +

4R (a,b,0)[O:d]Eu(b), which indicates the parent space group ( mPm3 ), the k-point 
[½,½,½], the irrep ( +

4R ), the OPD (a,b,0), the parent atom [O] and Wyckoff site [d], the point-group irrep 
(Eu) that breaks the local site symmetry, and the branch of the OPD (b) involved.  Compared to intuitive 
atomic-coordinate labels like O(¼,¼,½+z), this scheme takes some getting used to.  But ISODISPLACE 
mode labels (described in more detail in Ref. [2]) do provide a very concise description of any distortion 
mode.  Observe that, in agreement with Table 1, five of the 24 distortion-mode amplitudes in Figure 2b 
are clearly much larger than the others.  In contrast, the 24 atomic-coordinate shifts (relative to their ideal 
undistorted parent positions) in Figure 2c exhibit a much more random distribution.  These histograms 
illustrate that structural information tends to be highly concentrated in the distortion-mode basis. 

A series of radio buttons near the top of the distortion page provide several avenues of exploration.  First, 
select "Distortion file" and click "OK" to save the distortion page.  You then have the option of quitting 
and later returning directly to this distortion page via the "Upload distortion file" link on the main page.  

Figure 3:  The ISODISPLACE View Distortion applet.  Interactive sliders control individual 
distortion mode amplitudes with a resolution 0.05 Å.  Master slider value scales all distortion modes.  
Click-and-drag structure rotation.  Toggle-controls for animation and viewing controls. 



Next, select "View distortion" and click the "OK" button, which opens an interactive Java applet in a 
separate window (Figure 3).  The applet has one interactive slider per distortion mode that allows you to 
visualize an individual mode's effect on the structure.  Try clicking the "Animate" checkbox to 
graphically animate the entire distortion.  Displacements and strains are represented in the obvious way.  
Occupancy-related orderings are represented by a variable atomic radius.  Other types of order parameters 
(e.g. anisotropic thermal parameters, etc.) might be accommodated in the future.  Abbreviated mode 
labels save space by omitting information that can be inferred from the distortion page. 

From the distortion page, select "CIF file" and click "OK" to export the distorted P21/n structure to 
another file named wo3_iso.cif.  Then open this file in a text editor (see Appendix).  In addition to the 
traditional atomic-coordinate description of the distorted structure, the file contains the complete 
distortion-mode description.  A quick check verifies that there are 24 variable atomic coordinates and 24 
distortion modes.  This file also includes other information that structure-refinement packages like 
TOPAS will need in order to directly refine the distortion-mode amplitudes.  These are (1) the atomic-
coordinate shifts, which all equal zero in the undistorted parent phase, (2) the formula relationships 
between the distorted atomic coordinates, undistorted coordinates and coordinate shifts, and (3) the 24×24 
matrix (in sparse form) that transforms the distortion-mode amplitudes into the coordinate shifts. 

4.2 Search restricted by space-group and basis 
Now return to the main ISODISPLACE page and assume that we don't yet know the details of the 
distorted structure, but see evidence from the diffraction data for a 2×2×2 supercell with space group 
P21/n.  Upload your previously saved parent-structure file (wo3_cubic.cif), select "Monoclinic cell choice 
2" again, scroll down to "Method 3" within the search page, and choose space group #14.  Select the 
"conventional or primitive real-space supercell shape" button and use ((2,0,0),(0,2,0),(0,0,2)) for the 
supercell basis.  Clicking the "OK" button (immediately below the basis fields) leads to a new page 
(which may take a minute to generate) containing a pull-down list of distortion symmetries that match 
your choice of space-group type and basis.  You should find that there are no less than 6 different origin 
choices for this basis, each of which results in very different distortion modes!  Which one is correct?  In 
general, one needs to explore each possibility, unless there are prior expectations regarding the 
irreps/OPDs involved.  In our case, we already know from the mode-decomposition example above that 
the correct supercell origin is (½,0,½).  Making this selection then takes us on to the distortion page, 
which looks much the same as before, except that the mode amplitudes are all zero.  Given this example, 
we hope that you will never again place too much faith in a supercell description that doesn't specify the 
origin! 

4.3 The general method: search for specific k-points, irreps, and OPDs 
Return again to the main ISODISPLACE page and assume that you already know which k-points, irreps 
and OPDs are required to generate the desired distortion symmetry.  As in the previous example, upload 
the cubic parent structure and move on to the search page.  Method 2 allows us to directly couple an 
arbitrary selection of commensurate k-point irreps, so almost any physically-realizable distortion 
involving strains, occupancies and atomic displacements can be accessed.  From Table 1, we see that the 
P21/n structure of WO3 can be generated by coupling −

3M (a,b,0), +
4R (a,b,0) and −

5X (0,0,a,a,b,-b).  First 
indicate that you wish to couple 3 irreps and click the corresponding "OK" button, which brings up three 
pull-down menus containing k-point choices.  Select M, R, and X.  On the next page, choose the correct 
irrep for each k-point.  The following page contains a list of distortion symmetries (also called isotropy 
subgroups).  If the pull-down menu only contains one item, there will be a "Generate isotropy subgroups" 
button -- click it and wait a minute or two while the menu is loaded.  The result is a bewildering list of 46 
different distortion symmetries that includes all of the acceptable ways to couple the OPDs available to 
each irrep.  The coupled OPD that we are looking for is just an aggregate of the three OPDs above: (a,b,0) 
⊕ (a,b,0) ⊕ (0,0,a,a,b,-b) → (a,b,0;c,d,0;0,0,e,e,f,-f).  This choice appears about 1/3 of the way down the 
list, and yields the expected space-group type and origin.  The basis, however, is an equivalent 



monoclinic cell with a different shape.  The resulting distortion page is similar to that obtained in the 
previous examples, except that −

3M , +
4R  and −

5X  have been moved to the top of the irrep list. 

4.4 Filtered search over special k-points 
Method 1 on the search page allows one to conveniently explore the database of all distortion symmetries 
that can be generated by a single irrep at a special k-point of symmetry.  Because the P21/n structure of 
WO3 requires coupled irreps, Method 1 cannot applied to this example. 

In summary, ISODISPLACE provides several different methods of generating distortion symmetries: (1) 
a filtered search over special k-points, (2) a general selection of coupled k-points/irreps/OPDs, (3) a 
search restricted by space-group type and basis, and (4) the automated decomposition of a known 
structure into distortion-mode amplitudes.  Regardless of which technique is used, the resulting distortion 
can be saved into a .cif file that contains computer-friendly instructions for refining distortion-mode 
amplitudes.  Such a refinement is the topic of the next section. 

5.0  Distortion-mode refinements 
We now proceed to illustrate a distortion-mode refinement using laboratory X-ray data collected on a 
sample of predominantly monoclinic WO3 (P21/n) which was cooled slowly from 1000 ºC as described 
by Woodward et al.8  Data were recorded at 300 K using a Bruker d8 diffractometer equipped with a 
LynxEye position sensitive detector.  A conventional Rietveld refinement used a total of 50 parameters: 
24 xyz fractional coordinates, 1 isotropic displacement parameter per atom type, 4 cell parameters, a scale 
factor, a height correction, 6 parameters of an asymmetric pseudo-Voigt peak shape function and the 
terms of a 12th order polynomial background function.  A final profile weighted R-factor of Rwp = 14.1 
and RBragg = 3.1 % was achieved.  Though the structure also has 24 displacive mode amplitudes, we 
observe that most of the structural information is concentrated within a mere handful (i.e. 5) of these 
modes. 

Distortion-mode refinements can be performed in a straightforward fashion using the menus/macros 
incorporated in the jEdit TOPAS interface and the wo3_300K.cif file described in Section 4.1 above.  See 
http://www.dur.ac.uk/john.evans/topas_academic/jedit_main.htm for more information about this 
interface.  As shown in Figure 4, a series of menu items lets you create an input file for distortion-mode 
refinements with just four mouse clicks: 

• Select Data File: allows you to browse for one of a number of TOPAS-supported data file formats 
(.raw files, .xy, .xye, .rd, etc) and writes corresponding lines to the .inp file. 

• Instrument/Corrections: introduces lines describing the diffractometer wavelength and 
geometry.  Common laboratory setups are included as choices, or the diffractometer can be 
described from scratch. 

• http://www.dur.ac.uk/john.evans/topas_academic/jedit_main.htm: allows one to import a .cif file 
created by ISODISPLACE or else read in a previously prepared .str distortion-mode file (TOPAS 
format).  With the former choice, the macro runs a small executable (isociftotopas.exe) which sits 
in the main TOPAS directory to convert the .cif to .str format, and then imports the results. 

• →TA: saves the file with an automatically-generated logical name and sets this as the file that 
TOPAS Academic (TA) will read from. 

These “four clicks” will set up a command file containing everything needed for a sensible default 
Rietveld refinement.  With one more click on the “TA” icon, one can launch TOPAS and perform the 
distortion-mode refinement.  One can, of course, further modify the .inp file, either manually or by using 
the other built-in TOPAS-related menus.  If one already has a .inp file set up for the system in question, 
isociftotopas.exe can be used independently to create distortion-mode-specific instructions.  See 
http://www.dur.ac.uk/john.evans/topas_academic/jedit_setup.htm for a full description of how to prepare 
jEdit for use with TOPAS and how to obtain menus which create .inp files for most common procedures 



(Rietveld refinement, Pawley refinement, Indexing, time of flight refinements, distortion-mode 
refinements, etc) is available on line .  A tutorial with example data sets for a simple distortion-mode 
refinement of  LaMnO3 (http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_isoriet.htm) is also 
available.  The jEdit menus contain “help” links which direct the user to these sites. 

 

Figure 4:  Screen shot of distortion-mode refinement menus in jEdit.  The minimum “four clicks” 
required to prepare and perform a distortion-mode refinement are annotated.  The colour-coded .inp file 
on the right shows the amplitudes of each of the 24 displacive distortion modes of the monoclinic 
structure of WO3 at 300 K. 

This straightforward process produces a .inp file in which each mode amplitude is set up as a refinable 
parameter labelled a1 – an for brevity (though the full mode label is listed alongside).  Atomic-coordinate 
shifts (e.g. dy) are expressed in TOPAS syntax using equations of the form: 

 prm W_1_dy = + 0.125*a1 – 0.125*a2;: -0.00308 

where the number after the colon indicates the derived value and is updated on refinement.  Atomic 
coordinates are then expressed in the form: 

 site W1 Y = ideal_W_1_y + W_1_dy; 

where ideal_W1_y is the fractional coordinate of W1 in the current cell setting appropriate for the high-
symmetry structure. 

Click 2 

Click 4

Click 1 

Click 3 



As an example, Figure 5 shows a Rietveld refinement in which only 5 key distortion-mode amplitudes are 
allowed to refine (i.e. modes a2, a3, a7, a8 and a19 from the .inp file visible in Figure 4; also see the 
P21/n entry in Table 1).  Thus we achieved Rwp = 14.3 % and RBragg = 3.6 % using just 5 structural 
degrees of freedom rather than the 24 parameters of a conventional refinement.  Note that these 5 
parameters contribute to shifts in 16 of the 24 xyz coordinates.  The need to use at least 5 modes is 
illustrated in Figure 6, which shows the closest fit to the published P21/n coordinates one can obtain using 
modes a1, a2, a3 and a4, with and without mode a19.  With only 5 modes, all atoms are placed within 0.1 
Å of the published positions determined from high-resolution neutron data. 

Figure 6:  Comparison of published P21/n structure of WO3 and a structure described by modes 
(a2, a2, a7 and a8) with (left) and without (right) mode a19.  Published coordinates shown in black.  
Distortion-mode structure in pink (W) and red (O).
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Figure 5:  Top: Rietveld fit from a refinement of the 5 most important distortion-mode amplitudes of 
P21/n WO3 against 300 K lab X-ray data.  Bottom: The refinement of the full set of 24 mode 
amplitudes (bottom) does not noticeably improve the fit.  The observed and calculated intensities 
are colored blue and red, respectively.  Allowed peak positions are indicated by vertical tick marks. 
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Figure 7:  (a) Dependence of Rwp on the number of non-zero distortion-modes refined (see text for 
explanation). (b) Dependence of Rwp on the number of distortion-modes retained from the structure of 
Woodward et al.8  (c) Mode amplitudes refined from X-ray data compared to values for structures from 
Woodward et al.8 and Howard et al.6  The insets in panels (a) and (b) are enlargements that eliminate the 
first few data points. 
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The sensitivity of the data to the number of distortion-mode amplitudes retained is shown quantitatively 
in the histograms of Figure 7a and 7b.  Figure 7a shows how the value of Rwp depends on the number of 
distortion-mode amplitudes used in the refinement.  To obtain these graphs, a series of refinements were 
performed in which only the n modes with the highest ratios of amplitude/esd in a refinement using n+1 
modes were retained.  A good fit can be achieved with 5 mode-amplitudes, whereas beyond about 9 
mode-amplitudes, Rwp is approximately constant.  The Rwp factors plotted in Figure 7b show the influence 
of sequentially adding distortion-modes derived from the published structure of Woodward,8 with the 
largest-magnitude distortions being added first.  The Rwp obtained with just 8 distortion modes included is 
essentially as good as that obtained with 24.  It’s interesting to note that Rwp actually increases very 
slightly in this plot on moving from 10 to 11 distortion-modes.  The distortion-mode included at this point 
( −

5X ) involves W motion.  The neutron-derived amplitude actually leads to a worse fit to the X-ray data.  
Histograms in 4a and 4b differ in shape due to the different sensitivities of neutron and X-ray data to 
distortions involving W and O. 

Figure 7c gives an indication of how sensitive laboratory X-ray data are to the distortion modes involving 
oxygen – note that the W:O ratio of scattering powers is 832:82 ~ 108 for X-rays, and that previous 
structural studies have relied primarily on neutron data.  The histogram compares mode-amplitudes from 
the two neutron refinements with the present X-ray refinement involving the full set of 24 mode 
amplitudes.  The amplitudes of the most important O modes (a7, a8 and a19) refine to values quite close 
to those determined from neutron diffraction data.  

6.0  Conclusions 
The internet-based ISODISPLACE software tool allows one to generate and interactively visualize almost 
any superstructural distortion, and to save the result in a .cif file that contains two complete structural 
descriptions: traditional atomic coordinates and symmetry-motivated distortion modes, together with the 
linear transformation between these two bases.  With the use of enhanced jEdit macros, TOPAS 
Academic can now read ISODISPLACE .cif files, allowing one to refine distortion-mode amplitudes 
directly using standard optimization algorithms.  These tools eliminate the need for manual structure 
transforms and most structural constraints, and also greatly simplify the process of exploring and testing 
candidate models.  By identifying the important distortion modes, one can successfully perform what 
might otherwise be a highly underdetermined refinement.  As an example, we have demonstrated a 
distortion-mode Rietveld refinement that captures the primary structural features of the 300 K monoclinic 
phase of WO3 and shows excellent agreement to laboratory X-ray data using just 5 variable mode 
amplitudes. 
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Appendix: CIF output from the mode decomposition of the P21/n phase of WO3 
 
# This file was generated by ISODISPLACE, version 4.0.5 
# Harold T. Stokes, Branton J. Campbell, David Tanner, Dorian M. 

Hatch 
# Brigham Young University, Provo, Utah, USA 
# 
# Space Group: 221 Pm-3m      Oh-1 
# Space-group preferences: monoclinic axes a(b)c, monoclinic cell 

choice 2, orthorhombic axes abc, origin choice 2, hexagonal axes 
# Lattice parameters: a=3.81000, b=3.81000, c=3.81000, 

alpha=90.00000, beta=90.00000, gamma=90.00000 
# W 1a   (0,0,0) 
# O 3d   (1/2,0,0) 
# Subgroup:  14 P2_1/n, basis={(2,0,0),(0,2,0),(0,0,2)}, 

origin=(1/2,0,1/2), s=8, i=96 
# Order parameter values: 
#  Pm-3m[0,0,0]GM1+(a) 221 Pm-3m s=1 i=1 
#     strain(a):   -0.01446 
#  Pm-3m[0,0,0]GM3+(a,b) 47 Pmmm s=1 i=6 
#     strain(a):    0.02360 
#     strain(b):   -0.01562 
#  Pm-3m[0,0,0]GM5+(0,0,a) 65 Cmmm s=1 i=6 
#     strain(a):   -0.01557 
#  Pm-3m[1/2,1/2,1/2]R4+(a,b,0) 12 A2/m s=2 i=24 
#     [O:d]Eu(a):  -0.27600 
#     [O:d]Eu(b):   0.21000 
#  Pm-3m[1/2,1/2,1/2]R5+(a,b,0) 12 A2/m s=2 i=24 
#     [O:d]Eu(a):  -0.00400 
#     [O:d]Eu(b):   0.00400 
#  Pm-3m[0,1/2,0]X5+(a,b,0,0,0,0) 11 P2_1/m s=2 i=24 
#     [O:d]Eu(a):   0.06800 
#     [O:d]Eu(b):   0.02900 
#  Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b) 59 Pmmn s=4 i=24 
#     [W:a]T1u(a):   0.02500 
#     [W:a]T1u(b):   0.23600 
#     [O:d]A2u(a):   0.00000 
#     [O:d]A2u(b):   0.07800 
#     [O:d]Eu(a):   0.00100 
#     [O:d]Eu(b):   0.09100 
#  Pm-3m[1/2,1/2,0]M1+(0,0,a) 123 P4/mmm s=2 i=6 
#     [O:d]A2u(a):   0.00600 
#  Pm-3m[1/2,1/2,0]M2+(0,0,a) 127 P4/mbm s=2 i=6 
#     [O:d]A2u(a):  -0.00100 
#  Pm-3m[1/2,1/2,0]M3+(0,0,a) 127 P4/mbm s=2 i=6 
#     [O:d]Eu(a):  -0.27200 
#  Pm-3m[1/2,1/2,0]M4+(0,0,a) 123 P4/mmm s=2 i=6 
#     [O:d]Eu(a):   0.00200 
#  Pm-3m[1/2,1/2,0]M3-(a,b,0) 72 Ibam s=4 i=24 
#     [W:a]T1u(a):  -0.25900 
#     [W:a]T1u(b):  -0.01200 
#     [O:d]A2u(a):  -0.05400 
#     [O:d]A2u(b):  -0.01300 
#  Pm-3m[1/2,1/2,0]M5-(0,0,a,-a,b,b) 71 Immm s=4 i=24 
#     [W:a]T1u(a):   0.00200 
#     [W:a]T1u(b):  -0.01900 
#     [O:d]Eu(a):   0.00400 
#     [O:d]Eu(b):  -0.01800 
  
data_isodisplace-output 
  
_symmetry_space_group_name_H-M "P 1 21/n 1" 
_symmetry_Int_Tables_number 14 
_cell_length_a    7.30084(7) 

_cell_length_b    7.53889(7) 
_cell_length_c    7.68962(8) 
_cell_angle_alpha 90.00000 
_cell_angle_beta  90.8920(10) 
_cell_angle_gamma 90.00000 
  
loop_ 
_symmetry_equiv_pos_as_xyz 
x,y,z 
-x-1/2,y+1/2,-z-1/2 
-x,-y,-z 
x-1/2,-y+1/2,z-1/2 
  
loop_ 
_atom_site_label 
_atom_site_type_symbol 
_atom_site_fract_x 
_atom_site_fract_y 
_atom_site_fract_z 
W1   W   0.2513(6)   0.0277(7)   0.2865(5)     
W2   W   0.2482(6)   0.0343(6)   0.7815(5)     
O1   O   0.0008(6)   0.0366(8)   0.2117(5)     
O2   O  -0.0026(6)   0.4631(8)   0.2164(5)     
O3   O   0.2821(4)   0.2602(7)   0.2871(4)     
O4   O   0.2107(4)   0.2602(8)   0.7309(4)     
O5   O   0.2860(6)   0.0390(6)   0.0064(5)     
O6   O   0.2849(6)   0.4849(5)  -0.0077(4)     
  
_iso_displacivemode_number   24 
  
loop_ 
_iso_displacivemode_ID 
_iso_displacivemode_label 
_iso_displacivemode_value 
   1 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[W:a]T1u(a)   0.02500 
   2 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[W:a]T1u(b)   0.23600 
   3 Pm-3m[1/2,1/2,0]M3-(a,b,0)[W:a]T1u(a)  -0.25900 
   4 Pm-3m[1/2,1/2,0]M3-(a,b,0)[W:a]T1u(b)  -0.01200 
   5 Pm-3m[1/2,1/2,0]M5-(0,0,a,-a,b,b)[W:a]T1u(a)   0.00200 
   6 Pm-3m[1/2,1/2,0]M5-(0,0,a,-a,b,b)[W:a]T1u(b)  -0.01900 
   7 Pm-3m[1/2,1/2,1/2]R4+(a,b,0)[O:d]Eu(a)  -0.27600 
   8 Pm-3m[1/2,1/2,1/2]R4+(a,b,0)[O:d]Eu(b)   0.21000 
   9 Pm-3m[1/2,1/2,1/2]R5+(a,b,0)[O:d]Eu(a)  -0.00400 
  10 Pm-3m[1/2,1/2,1/2]R5+(a,b,0)[O:d]Eu(b)   0.00400 
  11 Pm-3m[0,1/2,0]X5+(a,b,0,0,0,0)[O:d]Eu(a)   0.06800 
  12 Pm-3m[0,1/2,0]X5+(a,b,0,0,0,0)[O:d]Eu(b)   0.02900 
  13 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[O:d]A2u(a)   0.00000 
  14 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[O:d]A2u(b)   0.07800 
  15 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[O:d]Eu(a)   0.00100 
  16 Pm-3m[0,1/2,0]X5-(0,0,a,a,b,-b)[O:d]Eu(b)   0.09100 
  17 Pm-3m[1/2,1/2,0]M1+(0,0,a)[O:d]A2u(a)   0.00600 
  18 Pm-3m[1/2,1/2,0]M2+(0,0,a)[O:d]A2u(a)  -0.00100 
  19 Pm-3m[1/2,1/2,0]M3+(0,0,a)[O:d]Eu(a)  -0.27200 
  20 Pm-3m[1/2,1/2,0]M4+(0,0,a)[O:d]Eu(a)   0.00200 
  21 Pm-3m[1/2,1/2,0]M3-(a,b,0)[O:d]A2u(a)  -0.05400 
  22 Pm-3m[1/2,1/2,0]M3-(a,b,0)[O:d]A2u(b)  -0.01300 
  23 Pm-3m[1/2,1/2,0]M5-(0,0,a,-a,b,b)[O:d]Eu(a)   0.00400 
  24 Pm-3m[1/2,1/2,0]M5-(0,0,a,-a,b,b)[O:d]Eu(b)  -0.01800 
  
loop_ 
_iso_deltacoordinate_ID 
_iso_deltacoordinate_label 



_iso_deltacoordinate_value 
   1 W1_dx                  0.00131 
   2 W1_dy                  0.02769 
   3 W1_dz                  0.03648 
   4 W2_dx                 -0.00184 
   5 W2_dy                  0.03425 
   6 W2_dz                  0.03150 
   7 O1_dx                  0.00079 
   8 O1_dy                  0.03661 
   9 O1_dz                 -0.03832 
  10 O2_dx                 -0.00262 
  11 O2_dy                 -0.03688 
  12 O2_dz                 -0.03360 
  13 O3_dx                  0.03208 
  14 O3_dy                  0.01024 
  15 O3_dz                  0.03709 
  16 O4_dx                 -0.03931 
  17 O4_dy                  0.01024 
  18 O4_dz                 -0.01908 
  19 O5_dx                  0.03596 
  20 O5_dy                  0.03898 
  21 O5_dz                  0.00643 
  22 O6_dx                  0.03491 
  23 O6_dy                 -0.01509 
  24 O6_dz                 -0.00774 
  
loop_ 
_iso_coordinate_label 
_iso_coordinate_formula 
W1_x                "1/4 + W1_dx" 
W1_y                "0 + W1_dy" 
W1_z                "1/4 + W1_dz" 
W2_x                "1/4 + W2_dx" 
W2_y                "0 + W2_dy" 
W2_z                "3/4 + W2_dz" 
O1_x                "0 + O1_dx" 
O1_y                "0 + O1_dy" 
O1_z                "1/4 + O1_dz" 
O2_x                "0 + O2_dx" 
O2_y                "1/2 + O2_dy" 
O2_z                "1/4 + O2_dz" 
O3_x                "1/4 + O3_dx" 
O3_y                "1/4 + O3_dy" 
O3_z                "1/4 + O3_dz" 
O4_x                "1/4 + O4_dx" 
O4_y                "1/4 + O4_dy" 
O4_z                "3/4 + O4_dz" 
O5_x                "1/4 + O5_dx" 
O5_y                "0 + O5_dy" 
O5_z                "0 + O5_dz" 
O6_x                "1/4 + O6_dx" 
O6_y                "1/2 + O6_dy" 
O6_z                "0 + O6_dz" 
  
# matrix conversion: deltacoords = matrix * modeamplitudes 
# Square matrix with _iso_displacivemode_number rows and columns 
  
loop_ 
_iso_displacivemodematrix_row 
_iso_displacivemodematrix_col 
_iso_displacivemodematrix_value 
    1    4  -0.13123 
    1    5  -0.13123 
    2    1  -0.13123 
    2    2   0.13123 
    3    3  -0.13123 

    3    6  -0.13123 
    4    4   0.13123 
    4    5  -0.13123 
    5    1   0.13123 
    5    2   0.13123 
    6    3  -0.13123 
    6    6   0.13123 
    7   17  -0.13123 
    7   18   0.13123 
    7   22  -0.13123 
    8    7  -0.13123 
    8    9  -0.13123 
    8   15  -0.13123 
    9   19   0.13123 
    9   20  -0.13123 
    9   24   0.13123 
   10   17  -0.13123 
   10   18   0.13123 
   10   22   0.13123 
   11    7   0.13123 
   11    9   0.13123 
   11   15  -0.13123 
   12   19   0.13123 
   12   20  -0.13123 
   12   24  -0.13123 
   13    7  -0.13123 
   13    9   0.13123 
   13   11  -0.09280 
   13   12   0.09280 
   14   13  -0.13123 
   14   14   0.13123 
   15    8   0.13123 
   15   10   0.13123 
   15   11   0.09280 
   15   12   0.09280 
   16    7   0.13123 
   16    9  -0.13123 
   16   11  -0.09280 
   16   12   0.09280 
   17   13   0.13123 
   17   14   0.13123 
   18    8  -0.13123 
   18   10  -0.13123 
   18   11   0.09280 
   18   12   0.09280 
   19   19  -0.13123 
   19   20  -0.13123 
   19   23   0.13123 
   20    8   0.13123 
   20   10  -0.13123 
   20   16   0.13123 
   21   17  -0.13123 
   21   18  -0.13123 
   21   21  -0.13123 
   22   19  -0.13123 
   22   20  -0.13123 
   22   23  -0.13123 
   23    8  -0.13123 
   23   10   0.13123 
   23   16   0.13123 
   24   17  -0.13123 
   24   18  -0.13123 
   24   21   0.13123 
  
# end of structure file 

 

 


