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ISODISPLACE is a new internet-server tool for exploring structural phase

transitions. Given parent-phase structural information, it generates atomic

displacement patterns induced by irreducible representations of the parent

space-group symmetry and allows a user to visualize and manipulate

the amplitude of each distortion mode interactively. ISODISPLACE is

freely accessible at http://stokes.byu.edu/isodisplace.html via common internet

browsers.

1. Introduction

When studying a phase transition via diffraction techniques, one

typically needs to generate a low-symmetry structural model that can

be tested in a refinement package against experimental data. One

may likewise want to use the model as the starting point for a

computational energy minimization. The maximal subgroup listings

in the International Tables of Crystallography are an invaluable tool

for this purpose, though considerable care is required to handle the

change of basis and origin correctly. When the symmetry of the new

phase is not a maximal subgroup of the parent, the problem must be

solved in multiple steps, and more than one chain of subgroups may

be possible. The exploration of a single candidate symmetry can

become very complicated to manage ‘by hand’; hence the need for

computational tools such as those available in the ISOTROPY soft-

ware suite (Stokes & Hatch, 2000; Capillas et al., 2003) and other

packages (Kroumova et al., 2003; Kopský, 2003).

The subroutines of the ISOTROPY suite are powerful tools by

themselves and can be combined in many different ways to solve

practical crystallographic problems that are of interest to researchers

in physics, chemistry, biology, mechanical engineering and materials

science. However, it is a simple fact that most researchers in these

fields cannot afford the steep learning curve (theory, mathematics,

jargon, command language, etc.) that will allow them to take full

advantage of ISOTROPY’s breadth and flexibility. The present

ISODISPLACE software brings several of these tools to bear on a

specific problem of widespread interest and provides a simple

internet-based GUI that largely eliminates the learning curve.

Without requiring an understanding of the group-theoretical

methods involved, ISODISPLACE guides the user through the

process of selecting a distortion and provides an interactive Java

applet for graphically visualizing and interactively manipulating the

free parameters of the corresponding low-symmetry phase.

Applications of ISODISPLACE may include (i) the enumeration

of possible low-symmetry distortions consistent with incomplete

experimental evidence of a phase transition, (ii) the differentiation

amongst possible distortions based on their physical characteristics,

(iii) the validation of a transition obtained experimentally or

computationally, (iv) the efficient creation of distortion models that

can be exported to other software packages for experimental or

computational analysis, (v) the systematic theoretical exploration of a

class of transitions such as the well studied perovskite tilting patterns

(Glazer, 1972; Hatch & Stokes, 1987; Howard & Stokes, 1998), and

(vi) the creation and enjoyment of beautiful distortion modes, i.e. ‘art

for art’s sake’.

2. Group theoretical concepts

ISODISPLACE has been designed for use by researchers who are

not experts in the mathematical theory of crystallographic symmetry.

Without much mathematical rigor, we will here describe the group-

theoretical concepts employed for those who wish to gain a better

understanding of the nature of ISODISPLACE output. Several

examples will be presented that involve distortions of cubic perovs-

kite ABO3, which has space-group symmetry Pm�33m and unique

atoms located at Wyckoff sites A:b(1
2;

1
2;

1
2), B:a(0; 0; 0), and

O:d(1
2; 0; 0).

2.1. Space-group irreps and the irrep basis of distortion space

A space-group representation is a homomorphic mapping of an

infinite number of space-group symmetry operations onto an often

finite group of representative matrix operations called the ‘image’ of

the representation. The abstract n-dimensional vector space in which

the matrices of a representation operate is called the ‘carrier space’ of

the representation. The ‘dimension’ of the representation is the

dimension of its matrices, and the ‘order’ of the image is the number

of its distinct matrices. An irreducible representation or ‘irrep’ is a

representation that cannot be unitarily transformed into block-

diagonal form. A reducible representation is one that can be unitarily

transformed into block-diagonal form, such that each block is occu-

pied by an instance of one of the available irreps.

The term ‘distortion’ is an intuitive reference to the set of struc-

tural degrees of freedom in the low-symmetry phase that results from

a phase transition. Even users who are not well acquainted with

representation theory will benefit from an appreciation of the fact

that any distortion can be described as a vector in the abstract carrier

space of a representation of the parent structure, which we loosely

refer to here as ‘distortion space’. Once a basis of a distortion space

has been identified, one can describe any conceivable combination of

macroscopic strain and microscopic atomic displacement patterns

within that distortion space in terms of vector components along each

of the basis vector directions. Irreps are extremely useful in this

regard because they are associated with basis vectors that can always
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be chosen to be orthogonal to one another and to those of other

irreps (Eyring et al., 1944). They not only form a complete basis, but

also provide for a unique description of any distortion.

The reciprocal-space k-point or wavevector of a phase transition

indicates the location of any superlattice diffraction peaks that may

arise in the low-symmetry phase. The set of distinct k vectors related

by the symmetries of the space group are referred to collectively as

the ‘star’ of k. As is typical, we use the term ‘k-point’ to refer to the

entire star of k. ‘Special k-points’ are those that lie on points of

symmetry in reciprocal space. The k-points that lie along special lines

(i.e. lines of symmetry) or within special planes (i.e. planes of

symmetry), but which are not points of symmetry are called ‘non-

special k-points’. One typically groups non-special k-points of the

same type (i.e. same line or plane of symmetry) and refers to them

with a common k-point label. Similarly, all fully general k-points

share a common label ‘GP’.

ISODISPLACE uses the subroutines of the ISOTROPY software

suite to generate atomic displacement patterns induced by repre-

sentations of the parent space-group symmetry at reciprocal-space k-

points. In general, space-group irreps are defined relative to specific

k-points. A space-group irrep of the parent structure can only induce

distortions that produce the reciprocal superlattice defined by its k-

point. In the case of cubic Pm�33m ABO3 perovskite, ISODISPLACE

lists six irreps for the special R-point (k = ½12; 1
2;

1
2�), Rþ1 , Rþ3 , Rþ4 , Rþ5 , R�2

and R�4 , and four irreps for the non-special �-point (k = ½a; a; 0�),

�1;�2, �3 and �4. Even for distinct k-points with the same label, the

irreps defined at those points are distinct (e.g. ½13; 1
3; 0��1 versus

½14; 1
4; 0��1). While many phase transitions can be described in terms of

the basis vectors of a single irrep, some require reducible repre-

sentations that couple multiple irreps (Hatch & Stokes, 1991).

2.2. Isotropy subgroups (distortion symmetries)

When a crystal experiences a symmetry-lowering structural

distortion, some of the symmetry elements of the parent space group

are lost, while others persist in the resulting superstructure. Those

elements that persist form the space-group symmetry of the low-

symmetry phase, which is called an ‘isotropy subgroup’ of the parent

space group (Stokes & Hatch, 1987). Within a given isotropy

subgroup, many distinct distortions can be achieved by arbitrarily

choosing the values of the new degrees of freedom available. The

isotropy subgroup simply defines the common symmetry that each

such distortion will possess, and can be more intuitively referred to as

the ‘distortion symmetry’. Hereafter, we will use the terms ‘isotropy

subgroup’ and ‘distortion symmetry’ interchangeably.

A distortion will not possess all of the parent space-group

symmetry operations; yet it must, by definition, possess the subgroup

symmetries that persist in the superstructure. In other words, the

distortion vector is left invariant by the subgroup symmetry opera-

tions. It follows that the set of all possible distortion vectors sharing

the same distortion symmetry forms an ‘invariant subspace’ of the

carrier space (Bradley & Cracknell, 1972).

It is impossible to tabulate all possible distortion symmetries of a

parent space-group symmetry simply because there are an infinite

number of them. While there are only a finite number of distortion

symmetries for a given k-point, there are an infinite number of

possible k-points in continuous reciprocal space. Stokes & Hatch

(1987) have tabulated all of the isotropy subgroups of each of the 230

crystallographic space groups induced at special k-points by a single

irrep of the parent. ISOTROPY and ISODISPLACE further permit

one to explore those associated with non-special k-points and

coupled irreps.

2.3. Irrep kernels

Because an irrep mapping is homomorphic rather than isomorphic,

it is possible for many group elements (even an infinite number) to be

mapped onto the same matrix operator. The group of all symmetry

operators that are mapped by a representation onto the identity

matrix is called the ‘kernel’ of the representation. In the case of cubic

ABO3 perovskite, the kernel of the two-dimensional Rþ3 irrep has

space-group symmetry Fmmm, and the kernel of the three-dimen-

sional Rþ4 irrep has space-group symmetry P�11. In either case, the

identity matrix represents each element of the kernel, so that the

kernel leaves all distortions in the entire carrier space of the irrep

invariant. Thus, the kernel of an irrep is an isotropy subgroup (i.e.

distortion symmetry) of the parent space-group symmetry and also

corresponds to the largest invariant subspace (i.e. the whole carrier

space) belonging to that irrep.

2.4. Order parameters and order-parameter directions

Only three things are required to specify a given distortion

symmetry uniquely: a k-point, an irrep and one of its order-parameter

directions. The term ‘order-parameter direction’ (OPD) refers to a

direction, or rather a subspace, in the carrier space of the irrep. Each

distinct vector within such a subspace will correspond to a different

distortion. More specifically, the OPD identifies the invariant

subspace containing all of the distortion vectors that possess the

corresponding distortion symmetry. For a given irrep, the kernel will

always be the distortion symmetry with the most general OPD. For a

three-dimensional irrep, we express the OPD of the kernel with three

variable components (a, b, c) to indicate that any vector in the three-

dimensional carrier space is permitted.

Many irreps also induce intermediate distortion symmetries that

contain the kernel as a subgroup. These intermediate distortion

symmetries have smaller invariant subspaces, lower-dimensional

OPDs, higher space-group symmetries, and fewer degrees of freedom

than the kernel. For example, (a, a, 0) is a one-dimensional OPD of a

three-dimensional irrep, and refers to a more restrictive one-dimen-

sional subspace of (a, b, c). ISODISPLACE lists the OPDs of all

intermediate distortion symmetries. The list will tend (but not strictly)

towards lower symmetry from top to bottom, with the general OPD

appearing at the bottom. For cubic ABO3 perovskite, the three-

dimensional Rþ4 irrep of Pm�33m yields six OPDs: (a, 0, 0), (a, a, 0),

(a, a, a), (a, b, 0), (a, a, b) and (a, b, c).

When working within the kernel distortion symmetry of an irrep,

each structural degree of freedom provided by ISODISPLACE is a

vector component (i.e. amplitude) that corresponds to exactly one of

the irrep basis vectors. However, when working within an inter-

mediate distortion symmetry, one structural degree of freedom may

instead activate a symmetry-adapted linear combination of several

irrep basis vectors that takes advantage of the higher space-group

symmetry. In general, we will call these symmetry-adapted linear

combinations ‘distortion modes’. In the context of phase transitions,

the mode amplitudes are referred to as ‘order-parameter compo-

nents’. An arbitrary distortion can be thus decomposed into distor-

tion modes, one for each structural degree of freedom. Each

amplitude then determines how much of its corresponding mode to

mix into the overall atomic displacement pattern.

The precise definition of ‘order parameter’ is somewhat difficult to

organize here because the term is commonly used in different ways in

the context of phase transitions. When a transition involving multiple

irreps and OPDs gives rise to a distortion vector, one might define the

order parameter to be the complete set of its vector components over

the multi-irrep basis, where components within the same mode may

computer programs
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be linearly dependent. Or it may be more convenient to define it as

the complete set of independent vector components. Alternatively, it

is common to define an order parameter to be a vector in distortion

space that lies along a specific OPD of a specific irrep at a specific k-

point. Under this definition, an arbitrary distortion vector can be

composed of multiple order parameters, some of which may be multi-

dimensional themselves. This is the definition used by ISODIS-

PLACE.

3. Physical considerations

The fundamental advantages of the irrep-induced distortion modes

are (i) that they form a complete basis of distortion space, and (ii)

that the free energy of a crystalline solid can be expressed very simply

in terms of the corresponding order parameters (Landau, 1937;

Landau & Lifshitz, 1980). These symmetry-adapted distortion modes

often involve polyhedral stretches, rotations, shears, bucklings, and

other familiar geometric displacement patterns, which tend to have

clear physical meaning with respect to the interatomic interaction

forces that drive a phase transition. In most cases, the principal

component of a physical distortion can be described by a small

number of symmetry-adapted distortion-mode amplitudes.

Relying purely on symmetry considerations, ISODISPLACE

cannot take into account the physical parameters required to predict

the actual distortion-mode amplitudes in a real material. Experi-

mental (e.g. diffraction) data or ab initio calculations are generally

required to obtain a realistic set of amplitudes that fully define a

distortion. Of course, ISODISPLACE can be used to generate a

candidate distortion model conveniently that can then be exported

for further experimental or computational investigation.

Lattice vibrations can also be treated by thinking of distortions as

frozen phonon modes. The phonon basis vectors at a given k-point

are called polarization vectors or lattice normal modes and can also

be assigned to a distortion symmetry. Phonon polarization vectors

with a given distortion symmetry can, in principle, be decomposed

over the symmetry-adapted distortion-mode basis of ISODISPLACE

(Stokes, 1995). Once again, however, the details of the transformation

will depend on physical parameters such as atomic masses, intera-

tomic forces and thermodynamic state variables, which are not

considered by ISODISPLACE.

4. Functionality

4.1. Distortion symmetry selection

Given the parent structure, the selection of a distortion symmetry

involves three key decisions: a k-point in reciprocal space, an irrep of

the parent space-group symmetry at that k-point, and an OPD in the

carrier space of the irrep. At each step, ISODISPLACE computes the

possible choices and presents them to the user in drop-down menus,

so that all relevant possibilities can be explored without looking up

obscure labels in lengthy tables. Several decision paths are currently

available.

The general method requires the user to select the k-point, irrep,

and OPD in sequence. This approach can be used at any commen-

surate k-point (expressed in terms of rational fractions), including

special k-points, points located on k-lines and planes, and fully

general k-points. For each type of k-point, there are a finite number of

irreps available which are unique to that k-point. Similarly, each irrep

has a finite number of OPDs which are unique to that irrep. While a

given distortion symmetry may be associated with more than one

irrep (as discussed below), two different OPD subspaces of the same

irrep cannot lead to the same distortion symmetry. For a given parent

space group, k-point and irrep, there may be more than one distortion

symmetry that possesses the same supercell basis, or the same origin

shift, or possibly the same space-group symmetry. However, the

combination of supercell basis, origin shift and crystallographic space

group identifies only one distortion symmetry, or rather identifies a

specific domain of that distortion symmetry. To make domain

differences more transparent, ISODISPLACE generates a complete

list of the domains for a given distortion symmetry, along with other

useful domain-specific information.

A convenient alternative to the general method allows the user to

consider simultaneously all special k-points for relevant distortions

involving a single irrep, while imposing practical restrictions on the

final distortion symmetry, such as crystal family, space-group

symmetry, or supercell shape. Because the set of distortion symme-

tries that can be obtained in this way is manageably finite, their irreps

and OPDs have been precomputed and stored for rapid searching.

This method is not available for non-special k-points simply because

there are an infinite number of them. Another more flexible method

allows the user to search over arbitrary commensurate k-points and

coupled irreps while restricted to a user-specified space group and

supercell or superlattice basis.

For distorted structures with experimentally determined atomic

coordinates and cell parameters, ISODISPLACE also provides a

mechanism for automatic mode decomposition: the process of

transforming the superstructural atomic coordinates into the ampli-

tudes of the symmetry-adapted distortion modes of the parent

structure. This method requires the user to enter the parent structure

and the superstructure separately, along with the superstructure basis.

4.2. Irrep and OPD labels

ISODISPLACE lists the following information in each drop-down

menu that contains distortion symmetries: the space-group irrep label

(from which the k-point can be inferred), the OPD label and vector,

the conventional supercell basis, origin shift and size relative to the

parent cell, and finally the subgroup index relative to the parent

space-group symmetry. Like ISOTROPY, it uses the labels of Miller

& Love (1967) for k-points and irreps. In this standard scheme, k-

point labels consist of one or two capital letters. Space-group irrep

labels begin with the k-point label, followed by a numeral and

possibly a ‘+’ or ‘�’ sign. Where complex irreps must be combined in

order to transform them to real form, the resulting physically redu-

cible representation labels simply concatenate a pair of irrep labels

(Bradley & Cracknell, 1972). Wyckoff site point-group irreps are also

used by ISODISPLACE, which employs the conventional point-

group irrep labels common to molecular spectroscopy (e.g. Ag, B1u,

T2g, E, etc.).

OPD labels follow the convention of Stokes & Hatch (1987), and

begin with a capital letter or a numeral–letter combination that

indicates the dimension of the OPD: P for one dimension, C for two

dimensions and S for three dimensions, followed by the sequence 4D,

6D, 8D, 12D, 16D, 24D, 48D. These labels are useful when space is

limited, but do not contain as much information as complete OPD

descriptions of the form (a, �a, 0, b, c, 0). To avoid confusion,

remember that the use of lowercase alphabet letters (i.e. a, b, c . . . ) in

OPD and branch labels is not related to their use in Wyckoff point

labels or as unit-cell parameters.

Note that one cannot generally expect a given k-point label to have

comparable meanings within the contexts of two different parent

space-group symmetries. The labels are defined independently within

each parent space group. Similarly, it is not generally useful to

computer programs
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compare the irrep labels amongst different k-points, or the OPD

labels amongst different irreps. With experience, however, some

useful trends do become apparent.

4.3. Primary and secondary order parameters

An order parameter is ‘primary’ if it energetically drives the phase

transition. Similarly, the irrep by which the primary order parameter

is induced is called the primary irrep. Any other order parameters

(irreps) which are capable of cooperating with (i.e. coupling to) the

primary order parameter (irrep) are called ‘secondary’. ISODIS-

PLACE assumes that the user-selected irrep is primary, and then

calculates and displays all primary and secondary order parameters.

For a given parent atom type, primary order-parameter components

are always listed first, and can be identified by locating the primary

irrep within their distortion-mode labels.

The distortion modes of primary order parameters are always

sufficient for imposing the final distortion symmetry. Secondary order

parameters, on the other hand, are usually not sufficient, i.e. they do

not lower the symmetry enough by themselves. For example, any

internal degrees of freedom permitted by the parent space-group

symmetry will also exist in the superstructure as secondary order

parameters. While the primary order parameters are sufficient for

generating the final distortion symmetry, they are not sufficient for

exploring the entire invariant subspace of distortion vectors that

share that distortion symmetry. All primary and secondary order

parameters must be coupled if one wishes to achieve a fully arbitrary

distortion that utilizes all of the degrees of freedom available to the

superstructure.

In some cases, secondary order parameters arise which prove

sufficient to impose the final distortion symmetry by themselves. Let

g2 be such a secondary order parameter. If g1 is selected as the

primary order parameter, then g2 will couple as a secondary order

parameter. Alternatively, if g2 is assumed to be the primary order

parameter, then g1 will couple as a secondary order parameter. Thus,

the respective distortion modes of this ‘equi-symmetric’ pair of order

parameters, g1 and g2, can be very different, and yet lead to the same

distortion symmetry. In practice, ISODISPLACE automatically

couples all secondary order parameters so that both routes result in

the same set of distortion modes.

The well known a�a�c0 octahedral tilt pattern observed in many

perovskites (Glazer, 1972; Hatch & Stokes, 1987; Howard & Stokes,

1998) is generated by an order parameter of Rþ4 ða; a; 0Þ. The primary

oxygen displacement mode produces the octahedral tilts, which are

then accompanied by two secondary displacive modes of the equi-

symmetric order parameter Rþ5 ða; a; 0Þ and three secondary strain

modes (see Fig. 1). Strain modes are always associated with �-point

irreps and usually appear as secondary order parameters in displacive

transitions, though they must be primary in proper ferroelastic

transitions.

4.4. Order-parameter selection

The distortion modes within a given distortion symmetry are

grouped according to order parameter, where each order parameter

corresponds to an instance of one of the irreps in the overall block-

diagonal representation. Because multiple instances of an irrep can

contribute to the same distortion, ISODISPLACE further classifies

order parameters according to local atom-site considerations using

the algorithm of Stokes et al. (1991). First, each unique atom in the

parent cell can be associated with separate order parameters. Second,

the modes of a given Wyckoff site can be classified according to the

Wyckoff site point-group irreps that induce its local distortion.

A third level of classification is required for order parameters that

share the same local point-group irrep. We call these common-local-

irrep order parameters (CLIROPs) and distinguish them with an

extra numeral in the mode label (e.g. 1, 2, 3 . . . ). This ‘order-para-

meter number’ (OP#) is only displayed when there are at least two

CLIROPs. As a simple example, the T-site sublattice of faujasite (a =

25 Å) has one Si atom at the general Wyckoff position i(0.941, 0.121,

0.0364) of space group Fd�33m. The distortion symmetry induced by

�þ1 ðaÞ yields three one-dimensional CLIROPs associated with point-

group irrep ‘A’. They are [Si:i]A_1, [Si:i]A_2, and [Si:i]A_3. The

corresponding distortions displace Si along the x, y and z directions,

and appear to be breathing modes of the alpha-cage six-ring, the

alpha-cage four-ring and the double-six-ring, respectively. Note that

the structures of CLIROP modes are dependent on the irrep matrices

used, which in the present case were taken from the ISOTROPY

database. Another set of irrep matrices obtained by a similarity

transform would mix the modes within a given set of CLIROPs, but

could not mix modes from different k-points, atoms, space-group

irreps, or local point-group irreps. Also note that ISODISPLACE

CLIROP modes, while still independent, will not generally be

mutually orthogonal when dealing with non-rectangular unit-cell

shapes, though they can be easily orthogonalized if desired.

The individual distortion modes of multi-dimensional order para-

meters are further identified with the independent branches of their

multi-dimensional OPD. For example, there are three octahedral-

computer programs
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Figure 1
Two oxygen-displacement modes of cubic ABO3 perovskite that belong to equi-
symmetric irreps. Both result in a 21=2 � 21=2 � 2 supercell and space-group
symmetry Imma. Light-colored borders indicate the edges of the supercell and the
smaller parent cell. (a) Rþ4 ða; a; 0Þ induces a tilting of the BO6 octahedra, while (b)
Rþ5 ða; a; 0Þ induces a distortion that flattens the BO6 octahedra.
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rotation modes of the three-dimensional order parameter

Rþ4 ða; b; cÞ½O : d�Eu of cubic ABO3 perovskite corresponding to

branches ‘a’, ‘b’, and ‘c’, respectively.

4.5. Order-parameter types and tensors

There are numerous distinct classes of physical order parameters

(e.g. displacive, order–disorder, lattice strain, magnetic, etc.) that can

be associated with isotropy subgroups of the parent space-group

symmetry. These classes can be best described in terms of their

tensorial properties. Atomic displacement modes, for example, have

order parameters that transform like polar first-rank tensors under

the matrix operations of the irrep, whereas macroscopic strain modes

(i.e. lattice parameter changes) have polar symmetrized second-rank

tensor order parameters, and order–disorder modes have scalar order

parameters. While ISODISPLACE was originally intended only for

the exploration of displacive transitions, the current version imple-

ments macroscopic strains and allows order–disorder transitions with

some restrictions.

Because many distortion symmetries only have order parameters

that are not of the displacive, strain, or order–disorder types,

ISODISPLACE avoids time-consuming ‘dead-end’ searches by

filtering out the irreps that induce them. When a particular k-point is

considered, the program begins by checking each of the associated

primary irreps individually and only returns those that are capable of

atomic displacements, strains, or order–disorder. Later, when a

specific distortion symmetry is selected, it identifies any secondary

irreps capable of atomic displacements or strains, and outputs their

respective distortion modes.

In contrast to the displacive and strain cases, ISODISPLACE does

not classify order–disorder modes according to irrep, or even attempt

to compute them at all. There are, for example, no ‘site occupancy’

slider bars. While these could be implemented, they would add

complexity that does not seem necessary at the present time. Instead,

ISODISPLACE provides a color scheme and a series of checkboxes

that allow the user to individually highlight unique daughter sites in

the low-symmetry phase which have split from the same parent site.

In cubic ABO3 perovskite for example, �þ3 ða; bÞ splits the parent

oxygen site into three distinct daughter sites, any of which can be

distinguished by using the appropriate checkbox. ISODISPLACE

searches explicitly for irreps with order–disorder parameters in order

to avoid missing transitions like this one which have no displacive

modes.

Irrep subduction frequencies are used to determine whether or not

an irrep can yield order parameters of a particular tensorial form. A

detailed explanation of subduction frequencies can be found in the

book by Bradley & Cracknell (1972). We will digress only briefly here

to be concise regarding the method used. For microscopic atomic

displacements, ISODISPLACE calculates the subduction frequency

nijh ¼
1

jHj
X

x2H

��½�G
i ðxÞ��½�H

j ðxÞ�;

where �½�ðxÞ� refers to the character of matrix �ðxÞ in the image of

irrep �, �G
i is the ith irrep of parent space group G, �H

j is the jth

irrep of the point group H of parent Wyckoff site h, |H| indicates the

order of the image of �H
j , and x is summed over the elements of H. If

there is an occupied Wyckoff site h in the parent structure with a

point-group irrep �H
j that has first-rank polar order parameters, then

nijh > 0 implies that all isotropy subgroups induced by irrep �G
i will

have displacive order parameters. The requisite tensorial properties

of the order parameters of point-group irreps are simply extracted

from a pre-tabulated database.

For order–disorder parameters, �H
j is replaced in the subduction

frequency formula above by EH, the identity irrep of point group H. If

there is a Wyckoff site h in the parent structure such that nih > 0 and

�G
i 6¼ EH , then all of the isotropy subgroups induced by irrep �G

i

will have order–disorder parameters.

Macroscopic strains, which can only be induced by �-point irreps

of G, are treated somewhat differently. Any �-point irrep �G
i that

arises at a given k-point is tested directly for polar symmetrized

second-rank tensor order parameters. If �G
i is found to possess them,

any isotropy subgroups induced by �G
i will have strain order para-

meters.

Once the primary irreps that induce a specific isotropy subgroup S

of G have been identified, ISODISPLACE identifies secondary

irreps by calculating the following subduction frequency for each

candidate:

nj ¼
1

jSj
X

x2S

�½�G
j ðxÞ�;

where x is summed over the distinct matrices in the image of �G
j that

belong to S. If nj > 0, then �G
j must be either a primary or secondary

irrep of the transition that induces isotropy subgroup S. Secondary

irreps identified in this way are then checked to make sure that they

are capable of displacements, strains or order–disorder, as described

above.

4.6. Coupled primary order parameters

Some distortions cannot be generated by a single primary order

parameter, yet are still possible via the simultaneous application (i.e.

‘coupling’) of multiple primary order parameters. This process does

not lead to new distortion modes, but rather combines existing

distortion modes from different irreps to achieve more complex

distortions. Because each contributing distortion mode is associated

with a specific OPD and irrep, common expressions that arise include

‘coupled modes’, ‘coupled order parameters’ and ‘coupled irreps’.

In ISODISPLACE, a user first specifies the primary irreps

(including k-points) to be coupled, after which a drop-down menu

appears with a list of possible OPD combinations, each of which

identifies a distortion symmetry. Within a given distortion symmetry,

the user can then manually couple the mode amplitudes from

different irreps. Because coupled primary irreps involve a much

larger parameter space, ISODISPLACE allows the user to

enumerate all of the possibilities that might lead to a given supercell

or space-group symmetry. Because ISODISPLACE automatically

couples the primary irrep to any relevant secondary irreps, they do

not need to be explicitly coupled in by the user.

Different domains of a single order parameter are energetically

and physically equivalent, meaning that they are related by some

operation of the parent space group (such as a rotation or inversion)

that is lost in the transition. For example, a tetragonal strain can be

oriented along any one of three equivalent cubic [100] directions.

Rather than treating equivalent domains as distinct distortion

symmetries, ISODISPLACE selects one representative domain in

each case by internal convention, which may appear arbitrary to the

user. In general, the choice of domain can be made using any

reasonable convention without obviously changing the intrinsic

appearance of the distortion modes. When a pair of order parameters

are coupled, one domain must be selected from each of the contri-

buting order parameters. In such cases, it is useful to realise that

different combinations of the contributing domains may lead to

entirely different final distortion symmetries.
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Many distortions that require multiple primary irreps actually

occur in multiple steps, where only one irrep is active in a given step.

In ISODISPLACE, it is possible to implement those irreps inde-

pendently in any order to obtain the same distortion symmetry. First,

one irrep is applied, the resulting structure is saved and re-entered as

the new parent structure, and then the second irrep is applied. This

can be confusing because the second irrep

must be defined relative to the intermediate

distortion symmetry, so that its name and

behavior may not be identical to those of

the loosely corresponding irrep that is

defined relative to the parent space group.

Furthermore, the mode names and

arrangements may be somewhat different

depending on the route followed. Fortu-

nately, with a little ingenuity, identical final

distortions can always be achieved via

different routes by appropriately adjusting

the mode amplitudes. Patience and some

experimentation are required whenever

dealing with coupled primary irreps or

multi-step transitions.

Perovskite LaMnO3 exhibits a low-

temperature phase transition at 750 K (Matsumoto, 1970) to an

orthorhombic phase that accommodates both an out-of-plane octa-

hedral tilt and a Jahn–Teller (JT) distortion. The tilt is induced by the

irrep(OPD) combination Rþ4 ða; a; 0Þ yielding a 21=2 � 21=2 � 2

supercell with Imma symmetry, while the JT distortion can be

induced separately by Mþ2 ða; 0; 0Þ yielding a 21=2 � 21=2 � 1 supercell

with P4=mbm symmetry. Together, these two distortions couple as

Rþ4 Mþ2 ða; a; 0; 0; 0; bÞ to produce the well known Pnma phase in the

larger 2ð21=2Þ � 21=2 � 2 supercell, as illustrated in Fig. 2. Note that

the in-plane octahedral rotation induced by equi-symmetric

Mþ3 ða; 0; 0Þ is a prominent feature of this transition and more likely to

be primary than Mþ2 ða; 0; 0Þ. Experimentally, the irreps appear to

couple directly, though the details are more complicated than this

simple example suggests (Rodriquez-Carvajal et al., 1998).

Now, for purely pedagogical reasons, consider a multi-step route to

the Pnma phase in which two irreps are applied in sequence, as

diagrammed in Fig. 3. One could first apply the Rþ4 ða; a; 0Þ distortion

of Pm�33m to obtain an intermediate Imma phase, followed by the

X�4 ðaÞ distortion of Imma to complete the descent to Pnma. In this

case, the effect of X�4 ðaÞ on the intermediate Imma phase is roughly

analogous to that of Mþ2 ða; a; 0Þ on the Pm�33m parent phase. Alter-

natively, one can first apply the Mþ2 ða; 0; 0Þ distortion of Pm�33m to

obtain an intermediate P4=mbm phase, followed by the Zþ5 ða; aÞ
distortion of P4=mbm.

4.7. Distortion-mode classification

It is desirable to know the extent to which the distortion modes

generated by ISODISPLACE are unique. It is also helpful to have

unique labels with which to identify unique modes. These issues are

explored here, along with a unified explanation of the various choices

that identify a distinct mode. While many of these choices are

managed behind the scenes by ISODISPLACE, some will find it

useful to see how they are interrelated.

Distortion modes are classified by ISODISPLACE as illustrated by

the dependency tree of Fig. 4. On the left-hand side of the depen-

dency tree, the OPD (along with the choices leading up to it) specifies

a distortion symmetry. On the right-hand side of the tree, the OP#

(along with the choices leading up to it) specifies an order parameter.

Combining an order parameter with a distortion symmetry (indicated

by a dashed line in Fig. 4) adapts or restricts the order parameter to

that distortion symmetry. Finally, each branch of the symmetry-

adapted order parameter corresponds to a distinct distortion mode

with its own amplitude. While an OPD branch can be considered

independent of a specific order parameter, we find it helpful here to
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Figure 3
Symmetry map showing three routes to the Pnma tilted phase of cubic ABO3

perovskite, one via directly coupled irreps, and two via multi-step routes.

Figure 4
Dependency tree illustrating the classification of distortion modes. Nodes are
choices to be made, while arrows indicate the dependence of each choice on
previous choices. The dashed line indicates the point at which a symmetry-adapted
order parameter has been specified. A branch of the order parameter further
specifies an individual distortion mode.

Figure 2
(a) Irrep Rþ4 of cubic ABO3 perovskite induces a BO6 octahedral tilt mode. (b) Irrep Mþ2 induces a Jahn–Teller
octahedral stretch mode. Only oxygen-displacement modes are illustrated. (c) These two irreps couple to produce
the well known Pnma phase with its 21=2 � 21=2 � 2 supercell.
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define the order parameter as a whole before splitting it up into

branches. In practice, the user guides the selection of the distortion

symmetry, after which ISODISPLACE generates and presents all

available distortion modes for interactive exploration.

By combining global (parent space group) and local (Wyckoff site)

information, ISODISPLACE provides a mode label that completely

describes an arbitrary distortion mode of a parent structure. As an

esoteric example that fully illustrates the label format, consider the

following distortion of cubic ABO3 perovskite.

Pm�33m½14; 1
4; 0�SM1ða; a; b;�b; 0; 0; c; c; 0; 0; 0; 0Þ½O :d�Eu 2ðcÞ0:12

This label describes a k = [1
4;

1
4; 0] distortion along the S line of the

parent space group Pm�33m. The 12-dimensional �1 irrep and its three-

dimensional OPD, (a, a, b, �b, 0, 0, c, c, 0, 0, 0, 0) specify a distortion

symmetry with a 4 � 4 � 4 supercell and space group Ima2. Parent

Wyckoff site O:d, its point-group irrep Eu, and OP# 2 specify a

symmetry-adapted order parameter. Branch (c) of the OPD then

identifies a specific distortion mode belonging to the symmetry-

adapted order parameter. The 0.12 Å amplitude indicates the

magnitude of the largest displacement experienced by any of the

atoms affected by the mode. This definition accounts for the fact that

a single distortion mode can displace multiple unique atoms within

the superstructure that have split from the same parent atom. In such

cases, these unique atoms generally experience distinct displace-

ments.

Placing an atom name next to the Wyckoff label links an abstract

distortion mode to a physical atomic displacement pattern experi-

enced by a specific parent crystal structure. When the atom name is

removed, the mode label refers to a purely abstract distortion mode

that could be applied to any parent structure with the specified space-

group symmetry and occupied Wyckoff position.

For a given description of the parent crystal structure, there is a

unique relationship between ISODISPLACE mode labels and

physical atomic displacement patterns. However, if the parent

structure has more than one equivalent description, distinct mode

labels associated with different descriptions can refer to the same

atomic displacement pattern. Cubic ABO3, for example, has unique

atoms at Wyckoff positions A:b(1
2;

1
2;

1
2), B:a(0, 0, 0), and O:d(1

2; 0; 0) of

space group Pm�33m, but can be equivalently described by shifting

the origin so as to place the atoms at positions A:a(0, 0, 0), B:b(1
2;

1
2;

1
2),

and O:c(0; 1
2;

1
2). As a result, Pm�33m½12; 1

2;
1
2�Rþ4 ða; a; 0Þ½O :d�EuðaÞ and

Pm�33m½12; 1
2;

1
2�R�5 ða; a; 0Þ½O :c�EuðaÞ both describe the same octahedral

tilt pattern. To avoid confusion, it is important always to refer to an

explicit definition of the parent structure, including space-group

settings and atomic coordinates, when communicating or interpreting

mode labels.

In summary, the space of all possible distortions (consider all

supercell shapes, sizes and orientations) of a parent structure is

spanned by a basis of distortion modes that can be identified by their

combination of k-point, space-group irrep, OPD, Wyckoff site, local

point-group irrep, OP#, branch, and mode amplitude. While some

aspects of ISODISPLACE output (i.e. OPD configurations and

CLIROP modes) depend on the choice of irrep matrices used, the

irrep matrices in the ISOTROPY database are convenient, self-

consistent, and well tested, so that ISODISPLACE mode labels

provide a robust means of communicating distortion-mode details.

4.8. The xyz basis

While the irrep basis of the parent space group is a very useful

basis of the generalized vector space of all possible distortions, it is

not the only one. For most applications (structural refinements,

modeling, visualization, etc.), atomic displacements need to be

described in the more familiar xyz basis, which is the set of all atomic

x, y and z coordinates within the supercell. For a supercell with N

atoms, there are 3N such coordinates, though only some of them will

be independent degrees of freedom depending on the symmetry.

ISODISPLACE uses the algorithm of Stokes et al. (1991), as

contained within the ISOTROPY software, to compute the linear

transformation from the irrep basis into the xyz basis. Naturally, the

total number of degrees of freedom is independent of basis. Thus, if

there are n free atomic coordinates in the low-symmetry phase,

ISODISPLACE will provide n free order-parameter components.

As an example of the relationship between the irrep basis and the

xyz basis, consider a hypothetical distortion of cubic ABO3 perovs-

kite that doubles the cell size along the [100] axis. This would yield ten

atoms in a 2 � 1 � 1 supercell and 30 potentially free atomic coor-

dinates in the xyz basis. While no single irrep has a sufficiently high

dimension to accommodate a 30-dimensional distortion space, a large

block-diagonal representation can be constructed from a direct sum

of each of the irreps capable of contributing to a distortion in

the specified supercell. A given irrep subduces the reducible

block-diagonal representation more than once depending on the

number of parent cell atoms that it splits and other considera-

tions. Some exploration reveals that there are five primary X-

point irreps and two �-point irreps that can contribute:

Xþ1 ða; 0; 0Þ f2g, Xþ5 ða; b; 0; 0; 0; 0Þ f2g, X�3 ða; 0; 0Þ f2g, X�4 ða; 0; 0Þ f1g,
X�5 ða; b; 0; 0; 0; 0Þ f3g, ��4 ða; b; cÞ f4g and ��5 ða; b; cÞ f1g. The most

general OPD leading to the 2 � 1 � 1 supercell is shown for each

irrep, along with the number of order parameters per irrep (i.e.

subduction frequency) in curly brackets.

The total number of independent distortion modes is then 1� 2 + 2

� 2 + 1� 2 + 1� 1 + 2� 3 + 3� 4 + 3� 1 = 30, as expected, which if

all coupled simultaneously, will drive the space-group symmetry all

the way down to P1. Whereas an xyz basis vector displaces only one

coordinate of one atom within the supercell, a symmetry-adapted

irrep mode displaces many atoms at once. However, each basis

provides 30 independent degrees of freedom that span the same

distortion space. Thus, any arrangement of the 30 atoms in the

supercell can be achieved using either basis.

4.9. Limitations

Current limitations of ISODISPLACE include the following. (i)

The order of the irreps required can be made arbitrarily large by

choosing a sufficiently esoteric general k-point. When the irrep

multiplication tables grow to tax or exceed the computer memory

available, the computation may run indefinitely or crash. Coupled

irreps leading to large supercells can have the same effect. (ii)

Incommensurate k-points are being considered, but are not yet

implemented.

5. Conclusions

The problem of describing the results of a displacive phase transition

can be broken up into four steps: (i) determining the distortion

symmetry, (ii) identifying the distortion modes, (iii) determining the

individual mode amplitudes, and (iv) expressing the distorted struc-

ture in terms of the familiar xyz basis. Beginning with a parent crystal

structure, ISODISPLACE employs drop-down menus to guide the

user through the selection of any possible symmetry arising from

parent space-group irreps at commensurate k-points in reciprocal

space.
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Once a distortion symmetry has been selected, the user is

presented with an interactive Java applet containing a three-dimen-

sional image of the resulting structure and a panel of controls that

modify mouse behavior so as to permit arbitrary rotations, rotations

about specific axes, specific view directions, zooming, continuous

rotation, etc. In addition to atoms and bonds, the parent and supercell

edges are both represented, making the relative basis transformation

and origin shift apparent. Each distortion-mode amplitude can be

independently adjusted via slider bars while observing its effect on

the structure in real time. Once the individual amplitudes are chosen,

the entire distortion can also be animated sinusoidally or saved to a

structure file. Because each distortion symmetry can be explored

interactively in the viewer, users can now explore a wide range of

structural phase transitions without a thorough understanding of the

group-theoretical concepts involved.
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