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Session 1: Introduction and Space Groups

This tutorial guide is intended to help you learn how to use isotropy. All of the
features of isotropy are not shown here. For more details, see the descriptions of the
commands in the user’s manual.

Start isotropy by typing iso. The following message will appear on the screen:

Isotropy, Version 9.0, August 2007

Harold T. Stokes, Dorian M. Hatch, and Branton J. Campbell

Brigham Young University

Current setting is International (new ed.) with conventional basis vectors.

*

The asterisk * is a prompt, telling you that isotropy is waiting for a command. Let’s
begin with an example. Let us display the elements of space group #24 I212121 (D9

2).
We suggest that you work through these examples at the computer terminal with
isotropy running.

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2y|1/2,0,0), (C2z|0,1/2,0)

*

Commands are composed of keywords (VALUE, PARENT, SHOW, and ELEMENTS in the
example above) and parameters (24, in the example above). Different keywords and
parameters are separated by space characters in the command. All keywords may be
entered using either upper or lower case letters. All keywords may be abbreviated to the
first one or more characters, depending on the ambiguity of different keywords that start
with the same letter(s). For example, we could have typed V PA 24 instead of VALUE
PARENT 24. However, if we type

*V P 24

Ambiguous command: P

*

we find that the keyword P is ambiguous, since there is another keyword, POINTGROUP,
also beginning with P, and isotropy doesn’t know which you mean. isotropy returns
an error message and does not try to execute the command. In our examples, we will
always enter the keywords spelled out in full and in upper-case letters. If you misspell a
keyword,

*VALUE PARRENT

Syntax error: PARRENT

*

1



2 Session 1: Introduction and Space Groups

isotropy tells you which word is misspelled and does not try to execute the command.
If you enter extra keywords or parameters at the end of a command,

*SHOW PARENT VALUE

Warning: Extra parameters ignored: VALUE

*

isotropy executes the valid part of the command SHOW PARENT and then issues a
warning about the extra keyword or parameter at the end. Let us return to our example:

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2y|1/2,0,0), (C2z|0,1/2,0)

*

DISPLAY commands cause output to be generated. In this case, DISPLAY PARENT causes
information about space groups to be displayed. The VALUE command selects which
space group to display. The SHOW commands control what information about each space
group is to be displayed. In this case, VALUE PARENT 24 selects space group #24. SHOW
PARENT and SHOW ELEMENTS causes the symbol for the space group and the elements of
the space group to be displayed (actually, the coset representatives with respect to the
translational subgroup of the space group). The program recognizes the international
and Schoenflies symbols for the space group as well. For example, we could have typed
VALUE PARENT I2_12_12_1 or VALUE PARENT D2-9. We can also control which kind of
space-group symbols are to be displayed.

*VALUE PARENT 24

*SHOW PARENT

*SHOW ELEMENTS

*LABEL SPACEGROUP SCHOENFLIES

*DISPLAY PARENT

Parent Elements

24 D2-9 (E|0,0,0), (C2x|0,0,1/2), (C2y|1/2,0,0), (C2z|0,1/2,0)

*LABEL SPACEGROUP INTERNATIONAL

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2y|1/2,0,0), (C2z|0,1/2,0)

*

See the description of the command, LABEL SPACEGROUP, in the user’s manual for more
information. We can also control the way space-group elements are displayed.

*LABEL ELEMENTS INTERNATIONAL

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (x,y,z), (x,-y,-z+1/2), (-x+1/2,y,-z), (-x,-y+1/2,z)
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*LABEL ELEMENTS BRADLEY-CRACKNELL

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2x|0,0,1/2), (C2y|1/2,0,0), (C2z|0,1/2,0)

*

See the description of the command, LABEL ELEMENTS, in the user’s manual for more
information. We can also use different settings of space groups. For example, the
space-group setting (choice of origin and axes) for this space group is chosen different by
Bradley and Cracknell.

*SETTING BRADLEY-CRACKNELL

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2y|0,0,1/2), (C2x|0,1/2,0), (C2z|1/2,0,0)

*

Sometimes it is useful to see the vectors in terms of primitive lattice vectors instead of
conventional lattice vectors.

*LABEL VECTOR PRIMITIVE

*DISPLAY PARENT

Parent Elements

24 I2_12_12_1 (E|0,0,0), (C2y|1/2,1/2,0), (C2x|0,1/2,1/2), (C2z|1/2,0,1/2)

*

By the way, we can always find out which setting and form of vectors are being used:

*DISPLAY SETTING

Current setting is Bradley-Cracknell with primitive basis vectors.

*

For that matter, we can always find out which VALUE and SHOW commands are in effect:

*DISPLAY VALUE

The following VALUE commands are in effect:

PARENT 24

*DISPLAY SHOW

The following SHOW commands are in effect:

ELEMENT, PARENT

*

We can also display information using different settings in International Tables. For
example, there are two choices of origin for space group #48. By default, the program
uses the second choice, where the the origin is at the point of inversion.

*VALUE PARENT 48

*LABEL VECTOR CONVENTIONAL

*SETTING INTERNATIONAL

*DISPLAY PARENT
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Parent Elements

48 Pnnn (E|0,0,0), (C2x|0,1/2,1/2), (C2y|1/2,0,1/2), (C2z|1/2,1/2,0), (I|0,0,0),

(SGx|0,1/2,1/2), (SGy|1/2,0,1/2), (SGz|1/2,1/2,0)

*SETTING INTERNATIONAL ALL ORIGIN 1

*DISPLAY PARENT

Parent Elements

48 Pnnn (E|0,0,0), (C2x|0,0,0), (C2y|0,0,0), (C2z|0,0,0), (I|1/2,1/2,1/2),

(SGx|1/2,1/2,1/2), (SGy|1/2,1/2,1/2), (SGz|1/2,1/2,1/2)

*

The different settings for monoclinic and rhombohedral space groups are also available.
See the command, SETTING INTERNATIONAL in the user’s manual for more information.
The settings and forms of symbols that you prefer can be written into the file, iso.ini,
which the program will read and execute when it starts. For example, suppose that you
want elements to be displayed using the notation of International Tables and that you
want to always use the first origin choice. Then you would create a file, iso.ini, with the
following lines:

LABEL ELEMENT INTERNATIONAL

SETTING INTERNATIONAL ALL ORIGIN 1

and when the program starts it would read and execute those commands:

Isotropy, Version 8.0.2, October 2003

Harold T. Stokes and Dorian M. Hatch

Brigham Young University

Commands from iso.ini:

*LABEL ELEMENT INTERNATIONAL

*SETTING INTERNATIONAL ALL ORIGIN 1

End of commands from iso.ini.

Current setting is International (new ed.) with conventional basis vectors.

*

Now let us examine some of the other options for the DISPLAY PARENT command. We
can select space groups with a monoclinic base-centered lattice:

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*SHOW PARENT

*VALUE LATTICE MC

*DISPLAY PARENT

Parent

5 C2

8 Cm

9 Cc

12 C2/m
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15 C2/c

*

Note that the CANCEL command can remove SHOW and VALUE commands that have been
previously executed. See the description for the command, VALUE LATTICE, in the user’s
manual for a list of symbols for the the lattices. We can also select space groups with
crystal class 2/m:

*CANCEL VALUE LATTICE

*VALUE POINTGROUP 2/M

*DISPLAY PARENT

Parent

10 P2/m

11 P2_1/m

12 C2/m

13 P2/c

14 P2_1/c

15 C2/c

*

See the description for the command, VALUE POINTGROUP, in the user’s manual for a list
of symbols for the point groups. We can display the generating elements of the space
group:

*CANCEL VALUE POINTGROUP

*VALUE PARENT 24

*SHOW GENERATORS

*DISPLAY PARENT

Parent Generators

24 I2_12_12_1 (C2z|0,1/2,0), (C2x|0,0,1/2)

*

We can display the Wyckoff positions:

*CANCEL SHOW GENERATORS

*SHOW WYCKOFF VECTOR

*DISPLAY PARENT

Parent Wyckoff Points

24 I2_12_12_1 a (x,0,1/4), b (1/4,y,0), c (0,1/4,z), d (x,y,z)

*

We can also display all of the points for each position:

*SHOW WYCKOFF VECTOR ALL

*DISPLAY PARENT

Parent Wyckoff Points Coordinates

24 I2_12_12_1 a (x,0,1/4), (-x+1/2,0,-1/4)

b (1/4,y,0), (1/4,-y,1/2)

c (0,1/4,z), (0,-1/4,-z+1/2)
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d (x,y,z), (x,-y,-z+1/2), (-x+1/2,y,-z),

(-x,-y+1/2,z)

*

We can select a particular position:

*CANCEL SHOW WYCKOFF VECTOR ALL

*VALUE WYCKOFF A

*DISPLAY PARENT

Parent Wyckoff Points

24 I2_12_12_1 a (x,0,1/4)

*

We can show the point group of the position:

*SHOW WYCKOFF POINTGROUP

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups

24 I2_12_12_1 a (x,0,1/4) C2

*

C2 is the Schoenflies symbol for the point group. If we want the international symbol 2
to be displayed,

*LABEL POINTGROUP INTERNATIONAL

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups

24 I2_12_12_1 a (x,0,1/4) 2

*

We can also show the elements of the point group:

*SHOW WYCKOFF ELEMENTS

*DISPLAY PARENT

Parent Wyckoff Points Point Group Elements

24 I2_12_12_1 a (x,0,1/4) 2 (E|0,0,0), (C2x|0,0,1/2)

*

We can select values for the parameters x, y, z in the Wyckoff positions and display the
atomic coordinates:

*CANCEL SHOW WYCKOFF POINTGROUP

*CANCEL SHOW WYCKOFF ELEMENTS

*VALUE WYCKOFF XYZ 0.245 0 0

*SHOW WYCKOFF VECTOR ALL

*DISPLAY PARENT

Parent Wyckoff Points Coordinates

24 I2_12_12_1 a (0.24500, 0.00000, 0.25000)

(0.25500, 0.00000, -0.25000)

*
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Note that values must be selected for y and z, even though they are not used in the
Wyckoff position. If we select values for the lattice parameters, a, b, c, α, β, γ (α is the

angle between ~b and ~c, etc.), then we can display the coordinates in cartesian coordinates:

*VALUE LATTICE PARAMETER 7.62 8.43 9.79 90 90 90

*SHOW CARTESIAN

*DISPLAY PARENT

Parent Wyckoff Points Coordinates

24 I2_12_12_1 a (1.86690, 0.00000, 2.44750)

(1.94310, 0.00000, -2.44750)

*

See the description for the command, SHOW WYCKOFF in the user’s manual for more
information. There is a limited amount of on-line help available. The keyword ? displays
the valid keywords that could possibly be inserted at that position. For example,

*SETTING ?

Valid Keywords: BRADLEY-CRACKNELL, INTERNATIONAL, KOVALEV, MILLER-LOVE,

ZAK, MAGNETIC, NOMAGNETIC

*

This is the end of this tutorial. You may exit the program:

*QUIT
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If you have been running isotropy, quit the program and start it again.

We can display the ~k vectors in the first Brillouin zone. Let us do this for space group
#225 Fm3̄m (O5

h):

*VALUE PARENT 225

*SETTING MILLER-LOVE

*SHOW KPOINT

*SHOW KDEGREE

*DISPLAY KPOINT

k vector k degree

GM (0,0,0) 0

DT (0,2a,0) 1

LD (a,a,a) 1

SM (2a,2a,0) 1

L (1/2,1/2,1/2) 0

X (0,1,0) 0

W (1/2,1,0) 0

Q (1/2,-2a+1,2a) 1

V (2a,1,0) 1

C (b,b,2a-b) 2

A (-2a+2b,2a,0) 2

GP (-a+b+c,a-b+c,a+b-c) 3

*

These symbols for the ~k vectors follow the convention of Miller and Love. Greek letters
are represented with pairs of letters (GM = Γ, DT = ∆, LD = Λ, SM = Σ). GP is the general

point. The symbols a,b,c represent the parameters defining the ~k vector when it is along
a line, or in a plane, or at a general point. (Miller and Love use symbols α, β, γ.) The

degrees of freedom is equal to the number of parameters which define each ~k vector. ~k
vectors with zero degrees of freedom are called ~k points of symmetry. Those with one
degree are ~k lines of symmetry. Those with two degrees are ~k planes of symmetry. The
general point always has three degrees of freedom. The coordinates are given in terms of
the conventional reciprocal lattice vectors, which in this case are (2π/a)̂ı, (2π/a)̂,

(2π/a)k̂, where a is the lattice parameter. For example, the actual cartesian coordinates
for the W point are (π/a, 2π/a, 0). In terms of the primitive reciprocal lattice vectors,

*CANCEL SHOW KDEGREE

*LABEL VECTOR PRIMITIVE

*DISPLAY KPOINT

k vector

GM (0,0,0)

DT (a,0,a)

LD (a,a,a)

SM (a,a,2a)

9
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L (1/2,1/2,1/2)

X (1/2,0,1/2)

W (1/2,1/4,3/4)

Q (1/2,a+1/4,-a+3/4)

V (1/2,a,a+1/2)

C (a,a,b)

A (a,-a+b,b)

GP (a,b,c)

*

We can select a particular ~k point and display its star:

*LABEL VECTOR CONVENTIONAL

*VALUE KPOINT X

*SHOW STAR

*DISPLAY KPOINT

k vector Star of k

X (0,1,0) (0,1,0), (1,0,0), (0,0,1)

*

Irreducible representations (irreps) are associated with ~k vectors. For example, the irreps
at the Γ point are

*CANCEL SHOW ALL

*VALUE KPOINT GM

*SHOW IRREP

*DISPLAY IRREP

Irrep (ML)

GM1+

GM2+

GM3+

GM4+

GM5+

GM1-

GM2-

GM3-

GM4-

GM5-

*

These irrep symbols following the convention of Miller and Love and denote the irreps
Γ+
1 , Γ+

2 , etc. We can display the corresponding symbols for other settings:

*SHOW IRREP KOVALEV

*D IRREP

Irrep (ML) Irrep (Kov)

GM1+ k11t1

GM2+ k11t3
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GM3+ k11t5

GM4+ k11t9

GM5+ k11t7

GM1- k11t2

GM2- k11t4

GM3- k11t6

GM4- k11t10

GM5- k11t8

*

where the symbols denote irreps of Kovalev (k11τ̂
1, k11τ̂

3, etc.) For irreps at ~k = 0
(Γ point), the symbols for point-group irreps are often used. We can also display these:

*CANCEL SHOW IRREP KOVALEV

*SHOW IRREP POINTGROUP

*DISPLAY IRREP

Irrep (ML)

GM1+ A1g

GM2+ A2g

GM3+ Eg

GM4+ T1g

GM5+ T2g

GM1- A1u

GM2- A2u

GM3- Eu

GM4- T1u

GM5- T2u

*

where the symbols denote A1g, A2g, etc. Irreps map elements of the space group onto
matrices. The character is the trace of the matrix. We can display the character and/or
matrix for any element of the space group.

*CANCEL SHOW IRREP POINTGROUP

*VALUE IRREP GM4-

*SHOW CHARACTER

*SHOW MATRIX

*VALUE ELEMENT C2X 0 0 0

*DISPLAY IRREP

Irrep (ML) Element Char Matrix

GM4- (C2x|0,0,0) -1.000 1 0 0

0 -1 0

0 0 -1

*
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Here is an example for an irrep with a large dimension:

*VALUE IRREP W5

*VALUE ELEMENT SGX 1/2 1/2 0

*DISPLAY IRREP

Irrep (ML) Element Char Matrix

W5 (SGx|1/2,1/2,0) 0.000 -1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

*

The set of matrices onto which the irrep maps elements of the space group is called the
image of the irrep. Among the irreps for ~k points of symmetry, there are only 132
distinct images. These have been identified and labeled by Stokes and Hatch. For
example, the image onto which the irrep W5 maps space group elements is

*CANCEL SHOW ALL

*SHOW IRREP

*SHOW IMAGE

*DISPLAY IRREP

Irrep (ML) Image

W5 G1536a

*

The letter at the beginning of the symbol indicates the dimension of the image (G for
12-dimensional image). The numbers represent the number of distinct matrices in the
image (in this case, 1536 matrices), and the trailing letter distinguishes the different
12-dimensional images with 1536 matrices. Among the 132 images, there are actually
four of these, G1536a, G1536b, G1536c, and G1536d. We can display all of the matrices
in an image. Let us display one with four two-dimensional matrices:

*VALUE IMAGE B4A

*CANCEL SHOW IRREP

*SHOW ELEMENTS

*DISPLAY IMAGE
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Image Elements

B4a 1 0

0 1

-1 0

0 -1

0 -1

1 0

0 1

-1 0

*

We can also show the generating matrices of an image:

*CANCEL SHOW ELEMENTS

*SHOW GENERATORS

*DISPLAY IMAGE

Image Generators

B4a 0 1

-1 0

*

For irreps at non ~k points of symmetry, one or more of the parameters, α, β, γ (denoted

by a,b,c in the program), must be selected. For example, the irrep ∆1 is on a ~k line of
symmetry and requires a value for α. We select the value α = 1

4 using VALUE KVALUE

1,1/4. The 1 in front of the 1/4 tells isotropy that the value for one parameter will
follow.

*CANCEL SHOW ALL

*CANCEL VALUE IMAGE

*VALUE IRREP DT1

*VALUE KVALUE 1,1/4

*SHOW MATRIX

*VALUE ELEMENT C4Z+ 0 0 0

*DISPLAY IRREP

Element Matrix

(C4z+|0,0,0) 0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 -1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

*
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Compatibility relations can also be shown. For example,

*CANCEL SHOW ALL

*VALUE KPOINT GM

*VALUE COMPATIBILITY DT

*SHOW COMPATIBILITY

*DISPLAY IRREP

Compat (ML)

GM1+: DT1

GM2+: DT2

GM3+: DT1 DT2

GM4+: DT4 DT5

GM5+: DT3 DT5

GM1-: DT4

GM2-: DT3

GM3-: DT3 DT4

GM4-: DT1 DT5

GM5-: DT2 DT5

*

These relations show what happens as the ~k vector moves along the ∆ line to the Γ
point: each ∆ irrep becomes a Γ representation which can be decomposed into one or
more Γ irreps. For example, the six-dimensional ∆1 irrep at the Γ point can be
decomposed into the one-dimensional Γ+

1 irrep, the two-dimensional Γ+
3 irrep, and the

three-dimensional Γ4− irrep. These same relations show what happens to the irreps of
the “little group of ~k” as the ~k vector moves from the Γ point along the ∆ line: each Γ
irrep of the little group becomes a ∆ representation of the little group which can be
decomposed into one or more ∆ irreps of the little group. For example, the
three-dimensional Γ−4 irrep of the little group splits into the one-dimensional ∆3 irrep of
the little group and the two-dimensional ∆5 irrep of the little group. These compatibility
relations are useful when labeling phonon dispersion curves and electron band structures.

Irreps are classified as type 1, type 2, and type 3. A type-1 irrep can be brought to real
form by a similarity transformation. A type-2 irrep cannot be brought to real form, but
it can be brought to its complex conjugate by a similarity transformation. A type-2 irrep
is equivalent to its own complex conjugate. Its characters are real. A type-3 irrep cannot
be brought to real form and cannot be brought to its complex conjugate. Some of its
characters are complex. In phase transformation theory, we use real matrices. For type-2
and -3 irreps, we form real matrices by forming the direct sum of the matrix with its
complex conjugate and then bringing the resulting matrix to real form by a similarity
transformation. This resulting reducible representation is said to be physically
irreducible, i.e., irreducible with respect to real numbers. For example, there are three
irreps at the H point for space group #184: H1, H2 are type 3, and H3 is type 2. H2 is
the complex conjugate of H1, and H3 is equivalent to its own complex conjugate.

*VALUE PARENT 184

*VALUE KPOINT H
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*CANCEL SHOW ALL

*SHOW IRREP

*SHOW TYPE

*DISPLAY IRREP

Irrep (ML) Type

H1H2 3

H3H3 2

*

The program lists the physically irreducible representations, H1 ⊕H2 and H3 ⊕H3. The
program displays the matrices of these representations in real form:

*CANCEL VALUE KVALUE

*VALUE IRREP H1H2

*VALUE ELEMENT SGV1 0 0 1/2

*SHOW MATRIX

*DISPLAY IRREP

Irrep (ML) Type Element Matrix

H1H2 3 (SGv1|0,0,1/2) 0.000 0.000 0.500 0.866

0.000 0.000 0.866 -0.500

-0.500 -0.866 0.000 0.000

-0.866 0.500 0.000 0.000

*

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running isotropy, quit the program and start it again.

A great majority of solid-solid phase transitions can be described by the Landau theory
of phase transitions. In this theory, the free energy of a crystal is expanded in powers of
the order parameter, an n-dimensional vector in representation space. A phase transition
takes place when the minimum of the free energy occurs at a nonzero value of the order
parameter. Symmetry is lost in the transition, and the space-group symmetry is now a
subgroup of the parent group and consists of all space-group elements which leave the
order parameter invariant. This is called an isotropy subgroup.
As an example, let us consider the isotropy subgroups for the Γ−4 irrep of space group
#221 Pm3̄m (O1

h).

*VALUE PARENT 221

*VALUE IRREP GM4-

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Subgroup Basis Vectors Origin

99 P4mm (0,1,0),(0,0,1),(1,0,0) (0,0,0)

38 Amm2 (0,0,1),(1,-1,0),(1,1,0) (0,0,0)

160 R3m (1,-1,0),(0,1,-1),(1,1,1) (0,0,0)

6 Pm (0,1,0),(0,0,1),(1,0,0) (0,0,0)

8 Cm (1,1,0),(-1,1,0),(0,0,1) (0,0,0)

1 P1 (1,0,0),(0,1,0),(0,0,1) (0,0,0)

*

The coordinates of the origin as well as each basis vector of the lattice are given in terms
of the basis vectors of the lattice of the parent space group. For example, the basis
vectors ~a′i of the lattice of the isotropy subgroup R3m are given by

~a′1 = ~a1 − ~a2 ,

~a′2 = ~a2 − ~a3 ,

~a′3 = ~a1 + ~a2 + ~a3 ,

where ~ai are basis vectors of the lattice of the parent space group Pm3̄m. The irrep Γ−4
is three dimensional so that in this case the order parameter is a three-dimensional
vector. We can display the direction of the order parameter for each isotropy subgroup:

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

17
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Subgroup Dir

99 P4mm P1 (a,0,0)

38 Amm2 P2 (a,a,0)

160 R3m P3 (a,a,a)

6 Pm C1 (a,b,0)

8 Cm C2 (a,a,b)

1 P1 S1 (a,b,c)

*

The symbols, P3,P1,P3,C2,C1,S1, for the directions of the order parameters were chosen
by Stokes and Hatch. The symbols, a,b,c, in the components of the order parameters
represent arbitrary real numbers. Let us consider the isotropy subgroup P4mm. We can
select this subgroup with either the VALUE SUBGROUP 99 or the VALUE DIRECTION P1

command. Let us display the elements of the subgroup:

*VALUE DIRECTION P1

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Dir Elements

99 P4mm P1 (a,0,0) (E|0,0,0), (C2x|0,0,0), (C4x+|0,0,0), (C4x-|0,0,0),

(SGy|0,0,0), (SGz|0,0,0), (SGdf|0,0,0), (SGdd|0,0,0)

*

These are elements of the parent space group Pm3̄m which belong to the isotropy
subgroup P4mm. We see that the four-fold rotation axis points in the cubic x direction,
the same direction as the third basis vector of the lattice of P4mm (see above, where we
displayed the basis vectors). In the setting of P4mm, these both become the z direction.

The irrep Γ−4 maps each element of the space group onto a three-dimensional matrix. An
element operates on an order parameter via multiplication by these matrices. The
elements in the subgroup P4mm are mapped onto matrices which leave the order
parameter (a, 0, 0) invariant. For example, the matrix for {C+

4x|0, 0, 0} is

*SHOW MATRIX

*VALUE ELEMENT C4X+ 0 0 0

*DISPLAY IRREP

Element Matrix

(C4x+|0,0,0) 1 0 0

0 0 -1

0 1 0

*

Thus, when {C+
4x|0, 0, 0} operates on (a, 0, 0), we obtain 1 0 0

0 0 −1
0 1 0

 a
0
0

 =

 a
0
0

 ,
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and, as we can see, the order parameter is left invariant by this operation. We can also
show the generating elements of the subgroup:

*CANCEL SHOW MATRIX

*CANCEL SHOW ELEMENT

*SHOW GENERATOR

*DISPLAY ISOTROPY

Subgroup Dir Generators

99 P4mm P1 (a,0,0) (C4x+|0,0,0), (SGy|0,0,0)

*

It is sometimes useful to obtain a mapping of points in the parent group to points in the
subgroup:

*CANCEL SHOW GENERATOR

*SHOW XYZ

*DISPLAY ISOTROPY

Subgroup Dir New xyz

99 P4mm P1 (a,0,0) (y,z,x)

*

This means that a point (x, y, z) in Pm3̄m becomes (y, z, x) in P4mm. For example, an
atom at (0.681, 12 , 0) in Pm3̄m is at ( 1

2 , 0, 0.681) in P4mm. Perhaps an even more useful
function of isotropy is to identify the Wyckoff positions in the subgroup. For example,
in Pm3̄m, an atom at (0.681, 12 , 0) is at Wyckoff position h (x, 12 , 0) with x = 0.681.

*CANCEL SHOW XYZ

*SHOW WYCKOFF SUBGROUP

*VALUE WYCKOFF H

*SHOW WYCKOFF VECTOR ALL

*DISPLAY PARENT

Wyckoff Points Coordinates

h (x,1/2,0), (-x,1/2,0), (1/2,0,x), (1/2,0,-x), (0,x,1/2),

(0,-x,-1/2), (-1/2,-x,0), (-1/2,x,0), (-x,0,-1/2), (x,0,1/2),

(0,-1/2,-x), (0,1/2,x)

*DISPLAY ISOTROPY

Subgroup Dir Wyckoff New Wyckoff

99 P4mm P1 (a,0,0) h c, z’=x

c, z’=-x

e, x’=-x, z’=1/2

f, x’=x, z’=0

*VALUE PARENT 99

*VALUE WYCKOFF C

*DISPLAY PARENT

Wyckoff Points Coordinates

c (1/2,0,z), (0,1/2,z)

*VALUE WYCKOFF E
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*DISPLAY PARENT

Wyckoff Points Coordinates

e (x,0,z), (-x,0,z), (0,x,z), (0,-x,z)

*VALUE WYCKOFF F

*DISPLAY PARENT

Wyckoff Points Coordinates

f (x,1/2,z), (-x,-1/2,z), (-1/2,x,z), (1/2,-x,z)

*VALUE PARENT 221

*

We see that the 12 atoms at Wyckoff position h in Pm3̄m become, in P4mm, 2 atoms at
Wyckoff position c, 2 more atoms at a different Wyckoff position c, 4 atoms at Wyckoff
position e, and 4 atoms at Wyckoff position f . The symbols x′, z′ above denote variables
in the Wyckoff positions in P4mm. For example, the Wyckoff position c in P4mm is
( 1
2 , 0, z

′). Since x = 0.681 in our example, the atom is at ( 1
2 , 0, 0.681) in P4mm, the same

atom we mapped above using (y, z, x).

Now let us show some additional information about each subgroup. For this purpose, we
look at the isotropy subgroups for the irrep X+

1 .

*CANCEL SHOW WYCKOFF SUBGROUP

*VALUE IRREP X1+

*SHOW SIZE

*SHOW INDEX

*SHOW MAXIMAL

*CANCEL VALUE DIRECTION

*DISPLAY ISOTROPY

Subgroup Max Index Size Dir

123 P4/mmm yes 6 2 P1 (a,0,0)

123 P4/mmm yes 12 4 P2 (a,a,0)

221 Pm-3m yes 8 8 P3 (a,a,a)

47 Pmmm no 24 4 C1 (a,b,0)

123 P4/mmm no 24 8 C2 (a,a,b)

47 Pmmm no 48 8 S1 (a,b,c)

*

In the column labeled “Max” we find out whether or not the subgroup is maximal with
respect to the other isotropy subgroups for this irrep. (A maximal isotropy subgroup is
not a subgroup of any of the other isotropy subgroups.)

In the column labeled “Size” is given the size of the primitive unit cell of the subgroup
relative to the size of the primitive unit cell of the parent group. For example, consider
the subgroup P4/mmm in direction P1. Its lattice vectors are given by:

*VALUE DIRECTION P1

*SHOW BASIS

*DISPLAY ISOTROPY
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Subgroup Max Index Size Dir Basis Vectors

123 P4/mmm yes 6 2 P1 (a,0,0) (0,0,1),(1,0,0),(0,2,0)

*

i.e., ~a′1 = ~a3, ~a′2 = ~a1, and ~a′3 = 2~a2. The size of the unit cell of Pm3̄m is a3, where a is
the lattice parameter. The size of the unit cell of P4/mmm is 2a3, twice as large.

In the column labeled “Index” is given the index of the subgroup with respect to the
parent group. For example, the index of subgroup P4/mmm in direction P1 is 6. The
point group of Pm3̄m is m3̄m, which contains 48 elements. The point group of
P4/mmm is 4/mmm, which contains 16 elements. There are 3 times as many elements
in m3̄m as there are in 4/mmm. Also, as shown above, the size of the unit cell in
P4/mmm is 2 times as large as the unit cell in Pm3̄m. Thus the index is 3× 2 = 6.

Since the size of the unit cell in P4/mmm is twice as large as the unit cell in Pm3̄m, half
of the lattice points in Pm3̄m are no longer lattice points in P4/mmm. We can obtain a
list of these points:

*CANCEL SHOW BASIS

*CANCEL SHOW MAXIMAL

*CANCEL SHOW INDEX

*SHOW NEWFRACTIONAL

*SHOW XYZ

*DISPLAY ISOTROPY

Subgroup Size Dir New xyz New Fractionals

123 P4/mmm 2 P1 (a,0,0) (z,x,1/2y) (0,0,0), (0,1,0)

*

In the column labeled “New Fractionals” are given points in the unit cell of P4/mmm
which were lattice points in Pm3̄m. The coordinates of these points are given in terms of
the basis vectors of the lattice of Pm3̄m. For example, the lattice point (0, 1, 0) in
Pm3̄m becomes a non-lattice point (0, 0, 12 ) in P4/mmm.

We can obtain information about the nature of the possible phase transitions.

*CANCEL SHOW SIZE

*CANCEL SHOW XYZ

*CANCEL SHOW NEWFRACTIONAL

*CANCEL VALUE DIRECTION

*SHOW LANDAU

*SHOW LIFSHITZ

*SHOW ACTIVE

*SHOW CONTINUOUS

*DISPLAY ISOTROPY

Subgroup Cont Active Lan Lif Dir

123 P4/mmm RG yes 0 0 P1 (a,0,0)

123 P4/mmm no yes 0 0 P2 (a,a,0)
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221 Pm-3m RG yes 0 0 P3 (a,a,a)

47 Pmmm no yes 0 0 C1 (a,b,0)

123 P4/mmm no yes 0 0 C2 (a,a,b)

47 Pmmm no yes 0 0 S1 (a,b,c)

*

In the column labeled “Lan” is shown the number of independent third-degree invariant
polynomials in the free energy expansion for this irrep. If this number is not zero, the
phase transition cannot be continuous. This is called the Landau condition.

In the column labeled “Lif” is shown the number of times that the vector representation
is contained in the antisymmetrized cube of the irrep. If this number is not zero, the
phase transition cannot be continuous. This is called the Lifshitz condition.

If both the Landau and Lifshitz conditions are met, the irrep is said to be active, as
shown in the column labeled “active”.

Finally, in Landau theory, a phase transition can be continuous only if it is possible for
the minimum of the free energy expanded to fourth degree to occur at the direction of
the order parameter. This is indicated by yes or no in the column labeled “Cont”.
RG indicates that the transition is allowed to be continuous in renormalization-group
theory, as well as in Landau theory. In the case above, when we minimize the free energy
expanded to fourth degree, we find that, depending on the value of the coefficients in the
expansion, the minimum can occur only at (a, 0, 0) or (a, a, a). Thus, a phase transition
from Pm3̄m to P4/mmm in direction P1 or to Pm3̄m in direction P3 may be continuous,
but a phase transition to any of the other isotropy subgroups cannot be continuous.

Searches for isotropy subgroups with particular properties are facilitated by various
VALUE commands: VALUE CONTINUOUS, VALUE PARENT, VALUE SUBGROUP, VALUE

LATTICE, VALUE LATTICE PARENT, VALUE POINTGROUP, VALUE IRREP, VALUE

KPOINT, VALUE IMAGE, VALUE DIMENSION, VALUE ACTIVE, VALUE CONTINUOUS,

VALUE LANDAU, VALUE LIFSHITZ, VALUE DIRECTION, VALUE SIZE, VALUE MAXIMAL.
You can read more about them in the user’s manual.

In a phase transition where symmetry is lost, the crystal often becomes divided into
domains, each with the same space-group symmetry of the subgroup but oriented in
different directions. As an example, we generate the domains for the isotropy subgroup
in direction P1 for irrep Γ−4 of space group Pm3̄m.

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*VALUE PARENT 221

*VALUE IRREP GM4-

*VALUE DIRECTION P1

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*SHOW GENERATOR

*SHOW DOMAIN

*SHOW DOMAIN GENERATOR
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*SHOW DISTINCT

*DISPLAY ISOTROPY

Domain Distinct Gen Subgroup Dir Generators

1 1 (E|0,0,0) 99 P4mm P1 (a,0,0) (C4x+|0,0,0), (SGy|0,0,0)

2 1 (C2y|0,0,0) 99 P4mm (-a,0,0) (C4x-|0,0,0), (SGy|0,0,0)

3 2 (C31-|0,0,0) 99 P4mm (0,0,a) (C4z+|0,0,0), (SGx|0,0,0)

4 2 (C32-|0,0,0) 99 P4mm (0,0,-a) (C4z-|0,0,0), (SGx|0,0,0)

5 3 (C31+|0,0,0) 99 P4mm (0,a,0) (C4y+|0,0,0), (SGz|0,0,0)

6 3 (C34+|0,0,0) 99 P4mm (0,-a,0) (C4y-|0,0,0), (SGz|0,0,0)

*

We see six domains, numbered 1 through 6, each with a domain generator (in the column
labeled “Gen”). Let gi, ~ηi, and Gi denote the generator, order parameter, and isotropy
subgroup, respectively, of the ith domain. We then have ~ηi = gi~η1 and Gi = giGig

−1
i .

For example, {C−31|0, 0, 0} generates the third domain by operating on the first domain.
Since {C+

4x|0, 0, 0} is one of the elements of the isotropy subgroup in the first domain,
{C+

4z|0, 0, 0} = {C−31|0, 0, 0}{C
+
4x|0, 0, 0}{C

−
31|0, 0, 0}−1 is an element of the isotropy

subgroup in the third domain. The irrep Γ−4 maps {C−31|0, 0, 0} onto the matrix:

*VALUE ELEMENT C31- 0 0 0

*SHOW MATRIX

*DISPLAY IRREP

Generators Element Matrix

(C31+|0,0,0), (C4x+|0,0,0), (I|0,0,0) (C31-|0,0,0) 0 1 0

0 0 1

1 0 0

*

so that,  0 1 0
0 0 1
1 0 0

 a
0
0

 =

 0
0
a


is the direction of the order parameter in the third domain. We can see that some of the
domains are not distinct. For example, the isotropy subgroups in domains 1 and 2 have
the same elements. In the column labeled “Distinct” is shown a numbering of distinct
isotropy subgroups. Since both domains 1 and 2 are numbered 1 in the “Distinct”
column, their isotropy subgroups contain the same elements.

See the tutorial on domains to learn more about additional features in isotropy that
deal with domains.

There are primary and secondary order parameters associated with any phase transition.
The distortions due to the primary order parameter completely determine the
space-group symmetry of the subgroup. The distortions due to the secondary order
parameters are consistent with that space-group symmetry but usually exhibit higher
symmetry. For example, we list the secondary order parameters associated with the
isotropy subgroup in direction P2 for the irrep X+

1 of space group Pm3̄m.
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*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE IRREP X1+

*VALUE DIRECTION C1

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY

Subgroup Dir Frequency

47 Pmmm C1 (a,b,0) 1 GM1+ P1(1), 1 GM2+ P1(1), 2 GM3+ C1(1), 2 X1+ C1(1), 2

X2+ C1(1), 1 M1+ P1(3), 1 M2+ P1(3)

*

Technically speaking, we see here all of the irreps which subduce Pmmm. The number in
front of the irrep symbol is the subduction frequency. Following the irrep symbol is
direction of the order parameter for the isotropy subgroup (and domain) which is a
supergroup of Pmmm. As an example, consider the third domain of the isotropy
subgroup with direction P1 for irrep M+

1 .

*CANCEL SHOW FREQUENCY

*SHOW BASIS

*SHOW GENERATOR

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors Generators

47 Pmmm C1 (a,b,0) (1,0,0),(0,2,0),(0,0,2) (C2z|0,0,0), (C2x|0,0,0), (I|0,0,0)

*VALUE IRREP M1+

*VALUE DIRECTION P1

*VALUE DOMAIN 3

*DISPLAY ISOTROPY

Domain Subgroup Dir Basis Vectors Generators

3 123 P4/mmm P1 (0,a,0) (0,1,1),(0,-1,1),(1,0,0) (C4x+|0,0,0),

(C2d|0,0,0), (I|0,0,0)

*

We can see that P4/mmm is a supergroup of Pmmm. Every element of Pmmm is also
an element of P4/mmm, including the translations. A distortion with P4/mmm
symmetry may be present without changing the symmetry Pmmm of the crystal. The
order parameter (a, b, 0) for irrep X+

1 is the primary order parameter. It determines the
symmetry Pmmm of the crystal. The order parameter (0, a, 0) for irrep M+

1 is a
secondary order parameter. It is allowed to be present in a crystal with Pmmm
symmetry. The same is true of all of the other secondary order parameters listed in the
column labeled “Frequency”. Note that the primary order parameter, X1+ C1(1), is also
listed for completeness. Any space group is its own supergroup.
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The data base which isotropy uses contains isotropy subgroups only for irreps at
~k points of symmetry. Isotropy subgroups for other irreps must be calculated as needed.
As an example, consider an irrep along the ∆ line in the first Brillouin zone.

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*VALUE PARENT 221

*SHOW KPOINT

*DISPLAY KPOINT

k vector

GM (0,0,0)

DT (0,a,0)

LD (a,a,a)

SM (a,a,0)

R (1/2,1/2,1/2)

X (0,1/2,0)

M (1/2,1/2,0)

S (a,1/2,a)

T (1/2,1/2,a)

Z (a,1/2,0)

C (a,a,b)

A (a,b,0)

B (a,1/2,b)

GP (a,b,c)

*

We see that points on the ∆ line (abbreviated DT) are given by (2π/a)(0, α, 0). Let
α = 1

4 , a point half-way to the X point.

*VALUE KPOINT DT

*SHOW IRREP

*DISPLAY IRREP

Irrep (ML) k vector

DT1 (0,a,0)

DT2 (0,a,0)

DT3 (0,a,0)

DT4 (0,a,0)

DT5 (0,a,0)

*

There are five irreps. Let’s choose ∆1 (DT1) and display the isotropy subgroups.

*VALUE IRREP DT1

*VALUE KVALUE 1,1/4

*CANCEL SHOW KPOINT

*CANCEL SHOW IRREP

*SHOW SUBGROUP
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*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

You have requested information about isotropy subgroups for:

irrep: DT1 space group: Oh-1

The data base for these isotropy subgroups cannot be found.

Should the data base be added?

Enter RETURN to continue. Enter any character to stop

Adding data base...

Subgroup Dir

123 P4/mmm P1 (a,0,0,0,0,0)

123 P4/mmm P2 (a,-a,0,0,0,0)

123 P4/mmm P3 (a,0,a,0,0,0)

123 P4/mmm P4 (a,-a,a,-a,0,0)

221 Pm-3m P5 (a,0,a,0,a,0)

221 Pm-3m P6 (a,-a,a,-a,a,-a)

99 P4mm C1 (a,b,0,0,0,0)

47 Pmmm C2 (a,0,b,0,0,0)

47 Pmmm C3 (a,-a,b,0,0,0)

47 Pmmm C4 (a,-a,b,-b,0,0)

38 Amm2 C5 (a,b,a,-b,0,0)

123 P4/mmm C6 (a,0,a,0,b,0)

123 P4/mmm C7 (a,0,a,0,b,-b)

123 P4/mmm C8 (a,-a,a,-a,b,0)

123 P4/mmm C9 (a,-a,a,-a,b,-b)

160 R3m C10 (a,b,a,b,a,b)

25 Pmm2 S1 (a,b,c,0,0,0)

25 Pmm2 S2 (a,b,c,-c,0,0)

47 Pmmm S3 (a,0,b,0,c,0)

47 Pmmm S4 (a,0,b,0,c,-c)

47 Pmmm S5 (a,-a,b,0,c,-c)

47 Pmmm S6 (a,-a,b,-b,c,-c)

Enter RETURN to continue. Enter any character to stop.X

Quit display

*

isotropy assumes that the height of the screen is 22 lines. So, after displaying 22 lines,
it pauses and waits for the user to indicate whether or not to display the next screen of
data. We terminated the display by entering an X instead of a return. The number of
lines to be displayed at a time can be changed with the PAGE command. Also, this
feature can be turned off with the PAGE NOBREAK command.

Some of the features available for isotropy subgroups for irreps at ~k points of symmetry
are not presently implemented for those at non ~k points of symmetry. Also note that the
labeling of order parameter directions are arbitrary here. For example, the meaning of P1
here is different than its meaning for the six-dimensional images already in the data base.
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The labels for the directions are merely given for convenience so that we can refer to a
particular isotropy subgroup using it.

*VALUE DIRECTION P6

*DISPLAY ISOTROPY

Subgroup Dir

221 Pm-3m P6 (a,-a,a,-a,a,-a)

*

Sometimes, the list of isotropy subgroups for a particular irrep may be very long and
may require an unreasonable amount of time for isotropy to calculate them. A shorter
list can be generated by using only one arm of the star. You can do that by using VALUE

DIRECTION ONEARM. Sometimes only the kernel is needed. (The kernel is the isotropy
subgroup for a general direction of the order parameter.) This can be generated using
VALUE DIRECTION KERNEL.

isotropy also generates isotropy subgroups for coupled order parameters. For example,
consider the coupling of order parameters for the M+

3 and R+
4 irreps of space group

Pm3̄m.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE IRREP M3+ R4+

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*SHOW IRREP

*DISPLAY ISOTROPY COUPLED

Data base for these coupled subgroups does not exist

Should the data base be added?

Enter RETURN to continue. Enter any character to stop.

Adding coupled isotropy subgroups...

Irrep (ML) Subgroup Dir

M3+R4+ 148 R-3 P3(1)P3(1) (a,a,a,b,b,b)

M3+R4+ 127 P4/mbm P1(1)P1(1) (a,0,0,b,0,0)

M3+R4+ 63 Cmcm P1(1)P1(2) (a,0,0,0,0,b)

M3+R4+ 137 P4_2/nmc P2(1)P1(2) (a,a,0,0,0,b)

M3+R4+ 59 Pmmn S1(1)P1(1) (a,b,c,d,0,0)

M3+R4+ 62 Pnma P1(1)P2(5) (a,0,0,0,b,b)

M3+R4+ 63 Cmcm P2(1)P2(1) (a,a,0,b,b,0)

M3+R4+ 14 P2_1/c P1(1)C2(9) (a,0,0,c,b,b)

M3+R4+ 15 C2/c P2(1)C2(1) (a,a,0,b,b,c)

M3+R4+ 12 C2/m P1(1)C1(1) (a,0,0,b,c,0)

M3+R4+ 11 P2_1/m P1(1)C1(5) (a,0,0,0,b,c)

M3+R4+ 11 P2_1/m S1(1)C1(1) (a,b,c,d,e,0)

M3+R4+ 2 P-1 P1(1)S1(1) (a,0,0,b,c,d)

M3+R4+ 2 P-1 S1(1)S1(1) (a,b,c,d,e,f)
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*

isotropy generates a file containing information about these isotropy subgroups. In this
case, the file was named s4550_01.iso. In the future, when we ask about these
subgroups, isotropy will find this file and will not need to generate the data again.

These isotropy subgroups actually belong to the six-dimensional reducible representation
M+

3 ⊕R
+
4 , the direct sum of M+

3 and R+
4 . The first three components of the order

parameter belong to M+
3 and the last three components belong to R+

4 . For example, the
first subgroup in the list contains all of the elements that keep the direction (a, a, a) of
the order parameter for M+

3 invariant, and, at the same time, keep the direction (b, b, b)
of the order parameter for R+

4 invariant. It is actually the intersection of the isotropy
subgroup in direction P3 for M+

3 and the isotropy subgroup in direction P3 for R+
4 . That

is the meaning of the symbol for the direction: P3(1)P3(1). The numbers in parentheses
refer to domains. In this case, the two isotropy subgroups are those of the first domain.
The third subgroup in the list, however, is an intersection of the first domain (a, 0, 0) of
the isotropy subgroup in direction P1 for M+

3 and the second domain (0, 0, b) of the
isotropy subgroup in direction P1 for R+

4 . We can select one of these isotropy subgroups
using the symbol for the direction of the order parameter exactly as it appears in the list.

*VALUE DIRECTION P1(1)P1(2)

*DISPLAY ISOTROPY COUPLED

Irrep (ML) Subgroup Dir

M3+R4+ 63 Cmcm P1(1)P1(2) (a,0,0,0,0,b)

*

What do you do if you know the structure of the subgroup but do not know which irrep
drives the transition? isotropy has a very useful feature for finding the primary and
secondary order parameters if the group-subgroup relation is known.

As an example, consider a monoclinic subgroup of Pm3̄m. Suppose that we know its
space-group symmetry is P2/m, the basis vectors of its lattice is (1, 1̄, 1), (1, 1, 0),
(0, 0, 1), and its origin is at the same point as the origin of the parent group Pm3̄m.

*VALUE SUBGROUP 10

*VALUE BASIS 1,-1,1 1,1,0 0,0,1

*VALUE ORIGIN 0,0,0

*SHOW KPOINT

*DISPLAY DIRECTION

Irrep (ML) k vector Dir Subgroup Size

GM1+ (0,0,0) (a) 221 Pm-3m 1

GM3+ (0,0,0) (a,0) 123 P4/mmm 1

GM4+ (0,0,0) (a,a,0) 12 C2/m 1

GM5+ (0,0,0) (a,b,-b) 12 C2/m 1

M1+ (1/2,1/2,0) (a,0,0) 123 P4/mmm 2

M4+ (1/2,1/2,0) (a,0,0) 123 P4/mmm 2

M5+ (1/2,1/2,0) (a,a,0,0,-a,a) 53 Pmna 2
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This is a complete list of order parameters that drive this phase transition,
along with the isotropy subgroup for each order parameter.
The primary order parameter completely determines the symmetry P2/m
of the subgroup. As we can see, none of the order parameters in the above list completely
determines the P2/m symmetry of the subgroup. There is no single primary
order parameter in this case. There must be a coupled primary order parameter.

*CANCEL VALUE SUBGROUP

*CANCEL VALUE DIRECTION

*VALUE IRREP M1+ M5+

*SHOW IRREP

*DISPLAY ISOTROPY COUPLED

Data base for these coupled subgroups does not exist

Should the data base be added?

Enter RETURN to continue. Enter any character to stop.

Adding coupled isotropy subgroups...

Irrep (ML) Subgroup Dir

M1+M5+ 12 C2/m P1(1)P2(1) (a,0,0,b,b,0,0,0,0)

M1+M5+ 74 Imma P1(1)P2(3) (a,0,0,0,0,b,b,0,0)

M1+M5+ 10 P2/m P1(1)P10(1) (a,0,0,b,b,0,0,b,-b)

M1+M5+ 2 P-1 P1(1)C13(1) (a,0,0,b,b,0,0,c,-c)

M1+M5+ 166 R-3m P3(1)P6(1) (a,a,a,b,0,b,0,b,0)

M1+M5+ 69 Fmmm P1(1)P1(3) (a,0,0,0,0,b,0,0,0)

M1+M5+ 140 I4/mcm P1(1)P9(2) (a,0,0,b,-b,0,0,b,b)

M1+M5+ 69 Fmmm C2(1)P9(3) (a,a,b,0,0,c,c,c,-c)

M1+M5+ 87 I4/m C2(1)P9(6) (a,a,b,0,0,-c,-c,c,-c)

M1+M5+ 148 R-3 P3(1)C23(1) (a,a,a,b,c,b,c,b,c)

M1+M5+ 12 C2/m P1(1)C1(3) (a,0,0,0,0,b,c,0,0)

M1+M5+ 72 Ibam P1(1)C12(2) (a,0,0,c,-c,0,0,b,b)

M1+M5+ 12 C2/m S1(1)C12(1) (a,b,c,d,d,e,-e,0,0)

M1+M5+ 12 C2/m C2(1)S12(9) (a,a,b,e,0,c,d,c,-d)

M1+M5+ 15 C2/c P1(1)4D3(5) (a,0,0,d,e,b,b,c,c)

M1+M5+ 2 P-1 S1(1)6D1(1) (a,b,c,d,e,f,g,h,i)

*CANCEL SHOW DIRECTION

*SHOW BASIS

*SHOW ORIGIN

*VALUE SUBGROUP 10

*DISPLAY ISOTROPY COUPLED

Irrep (ML) Subgroup Dir Basis Vectors Origin

M1+M5+ 10 P2/m P1(1)P10(1) (1,1,0),(-1,1,0),(0,0,1) (0,0,0)

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*CANCEL VALUE SUBGROUP

*SHOW DIRECTION VECTOR
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*VALUE IRREP M4+ M5+

*DISPLAY ISOTROPY COUPLED

Data base for these coupled subgroups does not exist

Should the data base be added?

Enter RETURN to continue. Enter any character to stop.

Adding coupled isotropy subgroups...

Irrep (ML) Subgroup Dir

M4+M5+ 12 C2/m P1(1)P2(1) (a,0,0,b,b,0,0,0,0)

M4+M5+ 74 Imma P1(1)P2(2) (a,0,0,0,0,0,0,b,b)

M4+M5+ 10 P2/m P1(1)P10(1) (a,0,0,b,b,0,0,b,-b)

M4+M5+ 2 P-1 P1(1)C13(1) (a,0,0,b,b,0,0,c,-c)

M4+M5+ 166 R-3m P3(1)P6(1) (a,a,a,b,0,b,0,b,0)

M4+M5+ 140 I4/mcm P1(1)P1(3) (a,0,0,0,0,b,0,0,0)

M4+M5+ 69 Fmmm C2(1)P1(1) (a,a,b,c,0,0,0,0,0)

M4+M5+ 87 I4/m C2(1)P1(4) (a,a,b,0,c,0,0,0,0)

M4+M5+ 69 Fmmm P1(1)P9(2) (a,0,0,b,-b,0,0,b,b)

M4+M5+ 148 R-3 P3(1)C23(1) (a,a,a,b,c,b,c,b,c)

M4+M5+ 72 Ibam P1(1)C1(3) (a,0,0,0,0,b,c,0,0)

M4+M5+ 12 C2/m S1(1)C1(1) (a,b,c,d,e,0,0,0,0)

M4+M5+ 12 C2/m P1(1)C12(2) (a,0,0,c,-c,0,0,b,b)

M4+M5+ 12 C2/m C2(1)S12(9) (a,a,b,e,0,c,d,c,-d)

M4+M5+ 15 C2/c P1(1)4D3(3) (a,0,0,c,c,d,e,b,b)

M4+M5+ 2 P-1 S1(1)6D1(1) (a,b,c,d,e,f,g,h,i)

*CANCEL SHOW DIRECTION

*SHOW BASIS

*SHOW ORIGIN

*VALUE SUBGROUP 10

*DISPLAY ISOTROPY COUPLED

Irrep (ML) Subgroup Basis Vectors Origin

M4+M5+ 10 P2/m (1,1,0),(-1,1,0),(0,0,1) (0,0,0)

*

We see that M+
5 may couple with either M+

1 or M+
4 to produce the P2/m symmetry.

This result would have been rather difficult to obtain without this very useful DISPLAY
DIRECTION feature of isotropy.

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running isotropy, quit the program and start it again.

There are two different kinds of distortions in a crystal: macroscopic and microscopic.
Macroscopic distortions are tensor quantities like strain which involve the crystal as a
whole. Microscopic distortions involve individual atoms. They include atomic
displacements and molecular rotations.

Macroscopic distortions are always associated with irreps at ~k = 0 (Γ irreps). We will
consider here the most common type of macroscopic distortion: strain, which is a
symmetrized tensor of rank 2. We specify this kind of tensor with the command, RANK
[12]. (See the description of the VALUE RANK command in the user’s manual for more
information.) For example, let us look at the possible macroscopic strains in a cubic
crystal.

*VALUE PARENT 221

*VALUE KPOINT GM

*VALUE RANK [12]

*SHOW MACROSCOPIC

*SHOW IRREP

*DISPLAY DISTORTION

Irrep (ML) Basis Functions

GM1+ xx+yy+zz

GM3+ xx+yy-2zz,1.732xx-1.732yy

GM5+ xy,yz,xz

*

We see here that ε11 + ε22 + ε33 transforms like the basis function of the one-dimensional
irrep Γ+

1 , that ε11 + ε22 − 2ε33 and
√

3ε11 −
√

3ε22 transform like basis functions of the
two-dimensional irrep Γ+

3 , and that ε12, ε23, ε13 transform like basis functions of the
three-dimensional irrep Γ+

5 .

Suppose there is a phase transition which results in the isotropy subgroup in the
direction P1 for irrep X+

1 .

*VALUE IRREP X1+

*VALUE DIRECTION P1

*SHOW FREQUENCY GAMMA

*SHOW FREQUENCY DIRECTION

*SHOW SUBGROUP

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Frequency

X1+ 123 P4/mmm 1 GM1+ P1(1), 1 GM3+ P1(2)

*CANCEL SHOW FREQUENCY

*SHOW GENERATOR

*DISPLAY ISOTROPY

31
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Irrep (ML) Subgroup Generators

X1+ 123 P4/mmm (C4y+|0,0,0), (C2z|0,0,0), (I|0,0,0)

*

We see that both P1 (domain 1) for irrep Γ+
1 and P1 (domain 2) for irrep Γ+

3 are
secondary order parameters. Both of these irreps allow strains. The irrep Γ+

1 allows a
strain where ε11 = ε22 = ε33. This is simply a change in volume of the crystal. For the
irrep Γ+

3 , we have

*VALUE IRREP GM3+

*VALUE DOMAIN 2

*DISPLAY DISTORTION

Irrep (ML) Domain Basis Functions

GM3+ 2 xx-2yy+zz

*

which is a strain where ε11 = −2ε22 = ε33. This is a tetrahedral strain where the sides of
the unit cell in the cubic x and z directions remain equal. This is consistent with the
tetrahedral space group symmetry P4/mmm with the four-fold axis in the cubic y
direction. The direction of the order parameter P1 in the second domain is given by:

*CANCEL SHOW GENERATOR

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

GM3+ 2 123 P4/mmm P1 (-0.500a,0.866a)

*

The distortion is obtained by a dot product of the order parameter and the basis
functions: − 1

2a(xx+ yy − 2zz) + 1
2

√
3a(
√

3xx−
√

3yy) = a(xx− 2yy + zz). This result
was automatically calculated when we displayed the distortion because we had selected
the direction and domain. Let’s do one more example:

*VALUE IRREP M5-

*VALUE DIRECTION C15

*CANCEL VALUE DOMAIN

*CANCEL SHOW DOMAIN

*SHOW GENERATOR

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Generators

M5- 12 C2/m C15 (a,b,a,-b,0,0) (C2f|0,1,1), (I|0,1,1)

*CANCEL SHOW DIRECTION

*CANCEL SHOW GENERATOR

*SHOW FREQUENCY GAMMA

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY
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Irrep (ML) Subgroup Frequency

M5- 12 C2/m 1 GM1+ P1(1), 1 GM3+ P1(3), 1 GM4+ P2(11), 2 GM5+ C2(5)

*VALUE IRREP GM5+

*VALUE DIRECTION C2

*VALUE DOMAIN 5

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Basis Functions

GM5+ C2 5 xy+xz,yz

*CANCEL SHOW FREQUENCY

*SHOW DIRECTION VECTOR

*SHOW GENERATOR

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir Generators

GM5+ 5 12 C2/m C2 (a,b,a) (C2f|0,0,0), (I|0,0,0)

*

Note that in this case, the secondary order parameter for irrep Γ+
5 is in the direction

(a, b, a), so that the distortion is given by axy + byz + axz = a(xy + xz) + byz. Since a, b
are arbitrary parameters in the order parameter, there are two independent distortions,
xy + xz and yz.

Now let us consider microscopic distortions. isotropy can display information about
distortions in a very general way. (Fortunately, for our convenience, isotropy also
implements three specific kinds of distortions which we also describe below.) A global
distortion is induced from a local distortion about a particular Wyckoff position in the
crystal. As an example, consider Wyckoff position c in cubic space group Pm3̄m. The
point group symmetry of that position is 4/mmm.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE WYCKOFF C

*SHOW WYCKOFF POINTGROUP

*LABEL POINTGROUP INTERNATIONAL

*DISPLAY PARENT

Wyckoff Points, Point Groups

c 4/mmm

*

The irreps of the point group 4/mmm are the same as the irreps of the space group
P4/mmm at the Γ point. We can make a list of them. By using the command, SHOW
IRREP POINTGROUP, we can also obtain the labeling of these point-group irreps, which is
different from their labeling in the space group.

*VALUE PARENT P4/MMM

*SHOW IRREP POINTGROUP

*VALUE KPOINT GM
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*DISPLAY IRREP

Irrep (ML)

GM1+ A1g

GM2+ B1g

GM3+ A2g

GM4+ B2g

GM5+ Eg

GM1- A1u

GM2- B1u

GM3- A2u

GM4- B2u

GM5- Eu

*

Suppose we are considering the space group irrep X+
1 . We want to obtain global

distortions that belong to this irrep. We can induce such distortions from local
distortions that belong to point group irreps of the Wyckoff c position.

*VALUE PARENT 221

*VALUE IRREP X1+

*SHOW FREQUENCY

*DISPLAY IRREP

Irrep (ML) Frequency

X1+ c 1 A1g, 1 Eu

*

We see here that at Wyckoff position c, only local distortions that belong to point group
irreps, A1g and Eu, will induce global distortions that belong to the space group irrep
X+

1 . Let us consider a local distortion that belongs to Eu.

*VALUE WYCKOFF IRREP EU

*SHOW MICROSCOPIC

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Operation Projected Basis Functions

X1+ c (0,1/2,1/2) (E|0,0,0) f1+f2, -f1+f2, 0

(0,1/2,3/2) (E|0,0,1) f1+f2, f1-f2, 0

(0,3/2,1/2) (E|0,1,0) -f1-f2, -f1+f2, 0

(0,3/2,3/2) (E|0,1,1) -f1-f2, f1-f2, 0

(1,1/2,1/2) (E|1,0,0) f1+f2, -f1+f2, 0

(1,1/2,3/2) (E|1,0,1) f1+f2, f1-f2, 0

(1,3/2,1/2) (E|1,1,0) -f1-f2, -f1+f2, 0

(1,3/2,3/2) (E|1,1,1) -f1-f2, f1-f2, 0

(1/2,1/2,0) (C31-|0,0,0) -f1+f2, 0, f1+f2

(1/2,1/2,1) (C31-|0,0,1) -f1+f2, 0, f1+f2

(1/2,3/2,0) (C31-|0,1,0) f1-f2, 0, f1+f2

(1/2,3/2,1) (C31-|0,1,1) f1-f2, 0, f1+f2

(3/2,1/2,0) (C31-|1,0,0) -f1+f2, 0, -f1-f2



Session 4: Distortions 35

(3/2,1/2,1) (C31-|1,0,1) -f1+f2, 0, -f1-f2

(3/2,3/2,0) (C31-|1,1,0) f1-f2, 0, -f1-f2

(3/2,3/2,1) (C31-|1,1,1) f1-f2, 0, -f1-f2

(1/2,0,1/2) (C31+|0,0,0) 0, f1+f2, -f1+f2

(1/2,0,3/2) (C31+|0,0,1) 0, -f1-f2, -f1+f2

(1/2,1,1/2) (C31+|0,1,0) 0, f1+f2, -f1+f2

(1/2,1,3/2) (C31+|0,1,1) 0, -f1-f2, -f1+f2

(3/2,0,1/2) (C31+|1,0,0) 0, f1+f2, f1-f2

(3/2,0,3/2) (C31+|1,0,1) 0, -f1-f2, f1-f2

(3/2,1,1/2) (C31+|1,1,0) 0, f1+f2, f1-f2

(3/2,1,3/2) (C31+|1,1,1) 0, -f1-f2, f1-f2

*

In the column labeled “Point” are the positions of the atoms inside the unit cell of the
kernel of X+

1 . f1 and f2 are local distortions at (0, 12 ,
1
2 ) which transform like the basis

functions of the two-dimensional point group irrep Eu. The projected basis functions are
the global distortions at each point that transform like the basis functions of the
three-dimensional space-group irrep X+

1 . In the column labeled “Operation” are elements
of the space group which take the first point (0, 12 ,

1
2 ) to the point on the corresponding

row. For example, {C+
31|0, 1, 0}(0, 12 ,

1
2 ) = ( 1

2 , 1,
1
2 ). Each local distortion in the projected

basis functions must be operated on by the point operator in that element. For example,
the projected basis functions at ( 1

2 , 1,
1
2 ) are actually 0, C+

31(f1 + f2), C+
31(−f1 + f2).

If we want the distortions specific to a particular isotropy subgroup, we simply take the
dot product of the order parameter with the projected basis functions. isotropy does
this for us.

*VALUE DIRECTION P1

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Operation Projected Basis Functions

X1+ c (0,1/2,1/2) (E|0,0,0) f1+f2

(0,3/2,1/2) (E|0,1,0) -f1-f2

(1/2,1/2,0) (C31-|0,0,0) -f1+f2

(1/2,3/2,0) (C31-|0,1,0) f1-f2

(1/2,0,1/2) (C31+|0,0,0) 0

(1/2,1,1/2) (C31+|0,1,0) 0

*

Since the direction P1 is (a, 0, 0), the global distortions are simply the first basis function
for each point. Also, only points inside the unit cell for the isotropy subgroup in direction
P1 are listed.

Now let us treat specific kinds of microscopic distortions. First of all, we consider the
most common type: atomic displacements. These can occur in a phase transition. They
also occur in vibrational modes. isotropy can be very useful for putting the dynamical
matrix into block-diagonal form.
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As an example of atomic displacements, consider a phase transition in a perovskite
crystal. The parent space group is the cubic Pm3̄m, and the irrep is Γ−4 . The atoms are
at Wyckoff positions a, b, c. The direction of the order parameter is P2.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE IRREP GM4-

*VALUE DIR P2

*VALUE WYCKOFF A B C

*SHOW DIRECTION VECTOR

*SHOW SUBGROUP

*SHOW BASIS

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors

38 Amm2 P2 (a,a,0) (0,0,1),(1,-1,0),(1,1,0)

*SHOW WYCKOFF

*SHOW MICROSCOPIC VECTOR

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P2 a (0,0,0) (1,1,0)

P2 b (1/2,1/2,1/2) (1,1,0)

P2 c (0,1/2,1/2) (1,0,0)

(1/2,1/2,0) (0,0,0)

(1/2,0,1/2) (0,1,0)

P2 c (0,1/2,1/2) (0,2,0)

(1/2,1/2,0) (2,2,0)

(1/2,0,1/2) (2,0,0)

*

The isotropy subgroup is orthorhombic. Global distortions are induced by a local
distortion at Wyckoff position a and at position b and by two different local distortions
at position c. We do not need to specify the point group irreps. isotropy tries all of
them and finds the ones that induce global distortions that belong to Γ−4 . We can also
display the atomic positions and displacements in cartesian coordinates:

*VALUE LATTICE PARAMETER 3.88 3.88 3.88 90 90 90

*VALUE WYCKOFF XYZ 0 0 0

*SHOW CARTESIAN

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P2 a (0.00000, 0.00000, 0.00000) (3.88000, 3.88000, 0.00000)

P2 b (1.94000, 1.94000, 1.94000) (3.88000, 3.88000, 0.00000)

P2 c (0.00000, 1.94000, 1.94000) (3.88000, 0.00000, 0.00000)

(1.94000, 1.94000, 0.00000) (0.00000, 0.00000, 0.00000)

(1.94000, 0.00000, 1.94000) (0.00000, 3.88000, 0.00000)
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P2 c (0.00000, 1.94000, 1.94000) (0.00000, 7.76000, 0.00000)

(1.94000, 1.94000, 0.00000) (7.76000, 7.76000, 0.00000)

(1.94000, 0.00000, 1.94000) (7.76000, 0.00000, 0.00000)

*

These are atomic displacements due to the primary order parameter. Let us look for
atomic displacements due to secondary order parameters.

*CANCEL SHOW CARTESIAN

*CANCEL VALUE WYCKOFF XYZ

*CANCEL SHOW BASIS

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY

Subgroup Dir Frequency

38 Amm2 P2 (a,a,0) 1 GM1+ P1(1), 1 GM3+ P1(1), 1 GM5+ P1(1), 1 GM4- P2(1), 1

GM5- P2(10)

*VALUE IRREP GM1+

*VALUE DIRECTION P1

*DISPLAY DISTORTION

*VALUE IRREP GM3+

*DISPLAY DISTORTION

*VALUE IRREP GM5+

*DISPLAY DISTORTION

*VALUE IRREP GM5-

*VALUE DIRECTION P2

*VALUE DOMAIN 10

*DISPLAY DISTORTION

Dir Domain Wyckoff Point Projected Vectors

P2 10 c (0,1/2,1/2) (0,-2,0)

(1/2,1/2,0) (2,2,0)

(1/2,0,1/2) (-2,0,0)

*

We first find that secondary order parameters occur for irreps Γ+
1 , Γ+

3 , Γ+
5 , Γ−5 . We try

them one at a time. If there is no data displayed in response to the DISPLAY DISTORTION

command, then no local atomic displacements can induce a global distortion for that
space group irrep. We see that the only secondary order parameter that produces atomic
displacement distortions is P2 (domain 10) for irrep Γ−5 . This global distortion involves
only displacements of the atoms at Wyckoff position c.

The collection of primary and secondary modes is called a “bush” of modes. We can
display the entire bush with one command.

*VALUE IRREP GM4-

*VALUE DIRECTION P2

*CANCEL VALUE DOMAIN

*SHOW MODES



38 Session 4: Distortions

*DISPLAY BUSH

Irrep (ML) Dir(dom) Wyckoff Point Displacement

GM4- P2(1) a (0,0,0) (1,1,0)

GM4- P2(1) b (1/2,1/2,1/2) (1,1,0)

GM4- P2(1) c (0,1/2,1/2) (1,0,0), (0,2,0)

(1/2,1/2,0) (0,0,0), (2,2,0)

(1/2,0,1/2) (0,1,0), (2,0,0)

GM5- P2(10) c (0,1/2,1/2) (0,-2,0)

(1/2,1/2,0) (2,2,0)

(1/2,0,1/2) (-2,0,0)

*

We can illustrate some additional features available by considering an atom at Wyckoff
position e and the order parameter P1 for irrep M+

1 .

*VALUE IRREP M1+

*VALUE DIRECTION P1

*VALUE WYCKOFF E

*SHOW BASIS

*CANCEL SHOW DOMAIN

*CANCEL SHOW FREQUENCY

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors

123 P4/mmm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,1)

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P1 e (x,0,0) (1,0,0)

(x,1,0) (-1,0,0)

(-x,0,0) (-1,0,0)

(-x,1,0) (1,0,0)

(0,0,x) (0,0,0)

(0,1,x) (0,0,0)

(0,0,-x) (0,0,0)

(0,1,-x) (0,0,0)

(0,x,0) (0,1,0)

(0,x+1,0) (0,-1,0)

(0,-x,0) (0,-1,0)

(0,-x+1,0) (0,1,0)

P1 e (x,0,0) (0,0,0)

(x,1,0) (0,0,0)

(-x,0,0) (0,0,0)

(-x,1,0) (0,0,0)

(0,0,x) (0,0,1)

(0,1,x) (0,0,-1)

(0,0,-x) (0,0,-1)

(0,1,-x) (0,0,1)
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(0,x,0) (0,0,0)

(0,x+1,0) (0,0,0)

(0,-x,0) (0,0,0)

(0,-x+1,0) (0,0,0)

*

We note that there are two sets of projected vectors. Each corresponds to a different
global distortion. These arise from different local distortions that belong to the same
point group irrep. Also, we can assign a value to the parameter x in Wyckoff position.

*VALUE WYCKOFF XYZ 0.156 0 0

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P1 e (0.15600, 0.00000, 0.00000) (1,0,0)

(0.15600, 1.00000, 0.00000) (-1,0,0)

(-0.15600, 0.00000, 0.00000) (-1,0,0)

(-0.15600, 1.00000, 0.00000) (1,0,0)

(0.00000, 0.00000, 0.15600) (0,0,0)

(0.00000, 1.00000, 0.15600) (0,0,0)

(0.00000, 0.00000, -0.15600) (0,0,0)

(0.00000, 1.00000, -0.15600) (0,0,0)

(0.00000, 0.15600, 0.00000) (0,1,0)

(0.00000, 1.15600, 0.00000) (0,-1,0)

(0.00000, -0.15600, 0.00000) (0,-1,0)

(0.00000, 0.84400, 0.00000) (0,1,0)

P1 e (0.15600, 0.00000, 0.00000) (0,0,0)

(0.15600, 1.00000, 0.00000) (0,0,0)

(-0.15600, 0.00000, 0.00000) (0,0,0)

(-0.15600, 1.00000, 0.00000) (0,0,0)

(0.00000, 0.00000, 0.15600) (0,0,1)

(0.00000, 1.00000, 0.15600) (0,0,-1)

(0.00000, 0.00000, -0.15600) (0,0,-1)

(0.00000, 1.00000, -0.15600) (0,0,1)

(0.00000, 0.15600, 0.00000) (0,0,0)

(0.00000, 1.15600, 0.00000) (0,0,0)

(0.00000, -0.15600, 0.00000) (0,0,0)

(0.00000, 0.84400, 0.00000) (0,0,0)

*

Next, consider an atom at Wyckoff position c.

*CANCEL VALUE WYCKOFF XYZ

*VALUE WYCKOFF C

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P1 c (0,1/2,1/2) (0,2,0)

(0,3/2,1/2) (0,-2,0)
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(1/2,1/2,0) (0,0,0)

(1/2,3/2,0) (0,0,0)

(1/2,0,1/2) (2,0,0)

(1/2,1,1/2) (-2,0,0)

*

We can control which points are displayed. By default, the points inside the unit cell of
the isotropy subgroup are displayed. All other points can be obtained by translations
using lattice vectors of the isotropy subgroup. It may sometimes be more convenient,
though, to display more points. We can define a cell containing the points to be
displayed.

*VALUE CELL 2,0,0 0,2,0 0,0,2

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P1 c (0,1/2,1/2) (0,2,0)

(0,1/2,3/2) (0,2,0)

(0,3/2,1/2) (0,-2,0)

(0,3/2,3/2) (0,-2,0)

(1,1/2,1/2) (0,-2,0)

(1,1/2,3/2) (0,-2,0)

(1,3/2,1/2) (0,2,0)

(1,3/2,3/2) (0,2,0)

(1/2,1/2,0) (0,0,0)

(1/2,1/2,1) (0,0,0)

(1/2,3/2,0) (0,0,0)

(1/2,3/2,1) (0,0,0)

(3/2,1/2,0) (0,0,0)

(3/2,1/2,1) (0,0,0)

(3/2,3/2,0) (0,0,0)

(3/2,3/2,1) (0,0,0)

(1/2,0,1/2) (2,0,0)

(1/2,0,3/2) (2,0,0)

(1/2,1,1/2) (-2,0,0)

(1/2,1,3/2) (-2,0,0)

(3/2,0,1/2) (-2,0,0)

(3/2,0,3/2) (-2,0,0)

(3/2,1,1/2) (2,0,0)

(3/2,1,3/2) (2,0,0)

*

Now let us consider another kind of microscopic distortion: rotations. These are
pseudovectors. Consider the order parameter P1 for irrep R−5 and atoms at Wyckoff
positions a, b, c. The atomic displacements are

*CANCEL VALUE CELL

*VALUE IRREP R5-
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*VALUE DIRECTION P1

*VALUE WYCKOFF A B C

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Vectors

P1 c (0,1/2,1/2) (0,2,0)

(0,1/2,3/2) (0,-2,0)

(1/2,1/2,0) (0,0,0)

(1/2,1/2,1) (0,0,0)

(1/2,0,1/2) (-2,0,0)

(1/2,0,3/2) (2,0,0)

These displacements can be view as a rotation of octahedra about Wyckoff position b.

*SHOW MICROSCOPIC VECTOR PSEUDO

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Pseudo Vectors

P1 b (1/2,1/2,1/2) (0,0,1)

(1/2,1/2,3/2) (0,0,-1)

*

Indeed this is a simpler way of viewing it: rotations about the z axis which alternate in
sign as we move along the z axis.

The last type of microscopic distortion featured in isotropy is order-disorder. Consider
an alloy on a bcc lattice. An order-disorder phase transition could occur which causes the
occupation at center of the cubic unit cell to be different from that at the corners. The
parent space group is Im3̄m. The order parameter is P1 of irrep H+

1 .

*VALUE PARENT 229

*VALUE IRREP H1+

*VALUE DIRECITON P1

*DISPLAY ISOTROPY

Subgroup Dir Basis Vectors

221 Pm-3m P1 (a) (1,0,0),(0,1,0),(0,0,1)

*VALUE WYCKOFF A

*SHOW MICROSCOPIC SCALAR

*DISPLAY DISTORTION

Dir Wyckoff Point Projected Order Functions

P1 a (0,0,0) f

(1/2,1/2,1/2) -f

*

We see that the ordering at (0, 0, 0) is opposite to the ordering at ( 1
2 ,

1
2 ,

1
2 ), as expected.

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running isotropy, quit the program and start it again.

In the Landau theory of phase transitions, the free energy of a crystal is expanded in
terms of components of the order parameter. From symmetry, certain monomials in this
expansion can be shown to vanish. Similarly, certain monomials can be combined to form
invariant polynomials.

As an example, consider the irrep Γ−4 of space group Pm3̄m.

*VALUE PARENT 221

*VALUE IRREP GM4-

*DISPLAY INVARIANT

Deg Invariants

2 n1^2 +n2^2 +n3^2

4 n1^4 +2n1^2n2^2 +2n1^2n3^2 +n2^4 +2n2^2n3^2 +n3^4

4 n1^4 +n2^4 +n3^4

*

There is a second-degree invariant polynomial (η21 + η22 + η23) ≡ η2 and two fourth-degree
invariant polynomials, η4 and (η41 + η42 + η43). Since isotropy did not display any
first-degree or third-degree invariant polynomials, there are none. By default, isotropy
displays invariant polynomials up to fourth degree. However, we can override the default:

*VALUE DEGREE 1 6

*DISPLAY INVARIANT

Deg Invariants

2 n1^2 +n2^2 +n3^2

4 n1^4 +2n1^2n2^2 +2n1^2n3^2 +n2^4 +2n2^2n3^2 +n3^4

4 n1^4 +n2^4 +n3^4

6 n1^6 +3n1^4n2^2 +3n1^4n3^2 +3n1^2n2^4 +6n1^2n2^2n3^2 +3n1^2n3^4 +n2^6

+3n2^4n3^2 +3n2^2n3^4 +n3^6

6 n1^4n2^2 +n1^4n3^2 +n1^2n2^4 +3n1^2n2^2n3^2 +n1^2n3^4 +n2^4n3^2 +n2^2n3^4

6 n1^6 +n2^6 +n3^6

*

and we can also display invariant polynomials for a single degree:

*VALUE DEGREE 6

*DISPLAY INVARIANT

Deg Invariants

6 n1^6 +3n1^4n2^2 +3n1^4n3^2 +3n1^2n2^4 +6n1^2n2^2n3^2 +3n1^2n3^4 +n2^6

+3n2^4n3^2 +3n2^2n3^4 +n3^6

6 n1^4n2^2 +n1^4n3^2 +n1^2n2^4 +3n1^2n2^2n3^2 +n1^2n3^4 +n2^4n3^2 +n2^2n3^4

6 n1^6 +n2^6 +n3^6

*
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We can display invariant polynomials for coupled order parameters as well:

*VALUE DEGREE 1 4

*VALUE IRREP GM5- GM4-

*SHOW IRREP

*DISPLAY INVARIANT

Irrep (ML) Deg Invariants

GM5-,GM4- 2 n1^2 +n2^2 +n3^2

2 n4^2 +n5^2 +n6^2

4 n1^4 +2n1^2n2^2 +2n1^2n3^2 +n2^4 +2n2^2n3^2 +n3^4

4 n1^4 +n2^4 +n3^4

4 n1^2n2n4 -n1^2n3n5 -n1n2^2n6 +n1n3^2n6 +n2^2n3n5 -n2n3^2n4

4 n1^2n4^2 +n1^2n5^2 +n1^2n6^2 +n2^2n4^2 +n2^2n5^2 +n2^2n6^2

+n3^2n4^2 +n3^2n5^2 +n3^2n6^2

4 n1^2n4^2 +n1^2n5^2 +n2^2n5^2 +n2^2n6^2 +n3^2n4^2 +n3^2n6^2

4 n1n2n4n6 +n1n3n5n6 +n2n3n4n5

4 n1n4^2n6 -n1n5^2n6 +n2n4n5^2 -n2n4n6^2 -n3n4^2n5 +n3n5n6^2

4 n4^4 +2n4^2n5^2 +2n4^2n6^2 +n5^4 +2n5^2n6^2 +n6^4

4 n4^4 +n5^4 +n6^4

Here the order parameter for Γ−5 is (η1, η2, η3) and
the order parameter for Γ−4 is (η4, η5, η6)

isotropyc̃an display invariant polynomials containing spatial derivatives. For
example, consider the irrep M1 of space group P4/n. Its Lifshitz frequency
is 1, so there exists a single second-degree invariant polynomial containing
first derivatives with respect to x, y, z.

*VALUE PARENT 85

*VALUE IRREP M1

*VALUE GRADIENT 1

*VALUE DEGREE 2

*DISPLAY INVARIANT

Irrep (ML) Deg Invariants

M1 2 n1n2z -n2n1z

*

The invariant polynomial is η1(∂η2/∂z)− η2(∂η1/∂z).

isotropy can evaluate invariant polynomials at a certain direction of the order
parameter. As an example, consider the irrep X−5 of space group Pm3̄m. This is a
six-dimensional irrep. There are five invariant polynomials of fourth-degree. If we
evaluate these polynomials at order parameter direction C1, ~η = (a, b, 0, 0, 0, 0), we
obtain polynomials with only two variables (a, b, which we rename η1, η2). We find that
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these five polynomials are now no longer independent. isotropy automatically removes
the polynomials that are not independent.

*VALUE PARENT 221

*VALUE IRREP X5-

*CANCEL VALUE GRADIENT

*VALUE DEGREE 1 4

*CANCEL SHOW IRREP

*DISPLAY INVARIANT

Deg Invariants

2 n1^2 +n2^2 +n3^2 +n4^2 +n5^2 +n6^2

4 n1^4 +2n1^2n2^2 +2n1^2n3^2 +2n1^2n4^2 +2n1^2n5^2 +2n1^2n6^2 +n2^4 +2n2^2n3^2

+2n2^2n4^2 +2n2^2n5^2 +2n2^2n6^2 +n3^4 +2n3^2n4^2 +2n3^2n5^2 +2n3^2n6^2

+n4^4 +2n4^2n5^2 +2n4^2n6^2 +n5^4 +2n5^2n6^2 +n6^4

4 n1^4 +n2^4 +n3^4 +n4^4 +n5^4 +n6^4

4 n1^2n2^2 +n3^2n4^2 +n5^2n6^2

4 n1^2n3n4 -n1^2n5n6 -n1n2n3^2 -n1n2n4^2 +n1n2n5^2 +n1n2n6^2 +n2^2n3n4

-n2^2n5n6 +n3^2n5n6 -n3n4n5^2 -n3n4n6^2 +n4^2n5n6

4 n1n2n3n4 +n1n2n5n6 +n3n4n5n6

*VALUE DIRECTION C1

*DISPLAY INVARIANT

Deg Invariants

2 n1^2 +n2^2

4 n1^4 +2n1^2n2^2 +n2^4

4 n1^4 +n2^4

*

We can also display invariant polynomials associated with a bush of vibrational modes.
These polynomials would be terms in the potential energy. Consider a primary order
parameter P2 for irrep Γ−4 , space group Pm3̄m.

*VALUE IRREP GM4-

*VALUE DIRECTION P2

*VALUE WYCKOFF C

*SHOW MODES

*SHOW INVARIANT

*DISPLAY BUSH

Irrep (ML) Dir(dom) Wyckoff Point Displacement

GM4- P2(1) c (0,1/2,1/2) (1,0,0), (0,2,0)

(1/2,1/2,0) (0,0,0), (2,2,0)

(1/2,0,1/2) (0,1,0), (2,0,0)

GM5- P2(10) c (0,1/2,1/2) (0,-2,0)

(1/2,1/2,0) (2,2,0)

(1/2,0,1/2) (-2,0,0)

Irrep (ML) Dir(dom) Wyckoff Mode Variables

GM4- P2(1) c n1,n2
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GM5- P2(10) c n3

Deg Invariants

2 n1^2

2 n1n2

2 n2^2

2 n3^2

4 n1^4

4 n1^3n2

4 n1^2n2^2

4 n1n2^3

4 n2^4

4 n1^2n3^2

4 n1n2n3^2

4 n2^2n3^2

4 n3^4

4 n1^3n3

4 n1^2n2n3

4 n1n2^2n3

4 n1n3^3

4 n2^3n3

4 n2n3^3

*

There are three modes, two for irrep Γ−4 (primary order parameter or root mode) and one
for Γ−5 (secondary order parameter or secondary mode).

This is the end of this tutorial. You may exit the program.

*QUIT
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If you have been running isotropy, quit the program and start it again.
When a crystal undergoes a phase transition, a collection of coherent domains usually
appear. These domains are symmetrically and energetically equivalent structures
differing only in their orientation and possibly position.

More details about domain pairs and twins and their symmetry groups can be found in:
D. M. Hatch and W. Cao, “Determination of Domain and Domain Wall Formation at
Ferroic Transitions,” Ferroelectrics 222, 1–10 (1999).
R. A. Hatt and D. M. Hatch, “Order-Parameter Profiles in Ferroic Phase Transitions,”
Ferroelectrics 226, 61–78 (1999).
D. M. Hatch, W. Cao, and A. Saxena, “Orientational Twins in an Improper Ferroelectric
Phase Transition Driven by the M−5 Zone-Boundary Phonon in RAg1−xInx,” Physical
Review B 65, 094110–1–11 (2002).

In the first part of this session, we consider as an example the space group R3̄m and
subgroup P21/c. This subgroup is obtained from irrep F+

2 with order parameter
direction P1.

*VALUE PARENT 166

*VALUE IRREP F2+

*VALUE DIRECTION P1

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Basis Vectors Elements

14 P2_1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3) (E|0,0,0), (C21’’|2/3,1/3,1/3),

(I|0,0,0), (SGv1|2/3,1/3,1/3)

*

There are six single domain states (SDS’s) that occur at this transition, and they
correspond to the cosets in R3̄m which can be formed with respect to P21/c. The
prototype of the transition shown above is always chosen to be the first domain state,
and the symmetry group elements that leave that domain invariant are given above. To
obtain the SDS’s, R3̄m is decomposed into cosets with respect to the subgroup P21/c of
the first domain. In this case, there are six cosets. The elements of the ith coset take the
first domain state into the ith domain state. One element from each coset is chosen to be
a domain state generator. The symmetry elements of the ith domain state are
Fi = giF1g

−1
i , where gi is the generator, and Fi is the set of space group elements for the

ith domain. We obtain the generators for each domain state and the elements of each
symmetry group below.

*CANCEL SHOW SUBGROUP

*CANCEL SHOW BASIS

*SHOW DOMAIN GENERATOR

*DISPLAY ISOTROPY

47
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Domain Gen Elements

1 (E|0,0,0) (E|0,0,0), (C21’’|2/3,1/3,1/3), (I|0,0,0),

(SGv1|2/3,1/3,1/3)

2 (C3+|0,0,0) (E|0,0,0), (C22’’|-1/3,1/3,1/3), (I|0,0,0),

(SGv2|-1/3,1/3,1/3)

3 (C3-|0,0,0) (E|0,0,0), (C23’’|-1/3,-2/3,1/3), (I|0,0,0),

(SGv3|-1/3,-2/3,1/3)

4 (E|2/3,1/3,1/3) (E|0,0,0), (C21’’|1,1,1), (I|4/3,2/3,2/3),

(SGv1|5/3,1/3,1/3)

5 (C3+|-1/3,1/3,1/3) (E|0,0,0), (C22’’|-1,0,1), (I|-2/3,2/3,2/3),

(SGv2|-1/3,4/3,1/3)

6 (C3-|-1/3,-2/3,1/3) (E|0,0,0), (C23’’|0,-1,1), (I|-2/3,-4/3,2/3),

(SGv3|-4/3,-5/3,1/3)

*

Note that the space group symmetry of each domain is P21/c. Only the orientation
and/or position of its origin is different.

*CANCEL SHOW DOMAIN GENERATORS

*CANCEL SHOW ELEMENTS

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Domain Subgroup Basis Vectors Origin

1 14 P2_1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3) (0,0,0)

2 14 P2_1/c (2/3,1/3,1/3),(0,1,0),(-2/3,-1/3,2/3) (0,0,0)

3 14 P2_1/c (-1/3,1/3,1/3),(-1,-1,0),(1/3,-1/3,2/3) (0,0,0)

4 14 P2_1/c (-1/3,-2/3,1/3),(1,0,0),(1/3,2/3,2/3) (2/3,1/3,1/3)

5 14 P2_1/c (2/3,1/3,1/3),(0,1,0),(-2/3,-1/3,2/3) (-1/3,1/3,1/3)

6 14 P2_1/c (-1/3,1/3,1/3),(-1,-1,0),(1/3,-1/3,2/3) (-1/3,-2/3,1/3)

*

In the above list, we see that domains 1 and 4 both have the same basis vectors but a
different origin. These two domains do have, in fact, the same space group elements.
This can be seen from the directions of the order parameters in each domain.

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

Domain Subgroup Dir

1 14 P2_1/c P1 (a,0,0)

2 14 P2_1/c (0,a,0)

3 14 P2_1/c (0,0,a)

4 14 P2_1/c (-a,0,0)

5 14 P2_1/c (0,-a,0)

6 14 P2_1/c (0,0,-a)
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*

Since the value of a in the order parameter is arbitrary, (a, 0, 0) and (−a, 0, 0) are
actually identical directions. Similarly, domains 2 and 5 have the same space group
elements, and domains 3 and 6 do also. There are three distinct domains for this
transition. The distinct domains can be shown explicitly.

*SHOW DISTINCT

*DISPLAY ISOTROPY

Domain Distinct Subgroup Dir

1 1 14 P2_1/c P1 (a,0,0)

2 2 14 P2_1/c (0,a,0)

3 3 14 P2_1/c (0,0,a)

4 1 14 P2_1/c (-a,0,0)

5 2 14 P2_1/c (0,-a,0)

6 3 14 P2_1/c (0,0,-a)

*

The next simplest structure to consider is a domain pair. This is an idealization of two
superimposed single domains in the same space but otherwise not interacting. The entire
set of possible pairs (Si, Sj) is 62 = 36 pairs. Pairs are equivalent if there is some element
g of the parent group such that (Si, Sj) = g(Sk, Sl) ≡ (gSk, gSl). In our example this
reduces the number of distinct classes of domain pairs to 3. isotropy shows us which
pairs (1, j) [shorthand for (S1, Sj)] are equivalent, along with operators g which connect
them.

*CANCEL SHOW DISTINCT

*CANCEL SHOW SUBGROUP

*CANCEL SHOW DIRECTION

*SHOW PAIRS

*DISPLAY ISOTROPY

Domain Pairs Equiv ops

1 1 (E|0,0,0)

2 3 (E|0,0,0)

3 3 (C21’’|0,-1,1)

4 2 (E|0,0,0)

5 3 (E|-1,0,1)

6 3 (C21’’|-1/3,-5/3,4/3)

*

Here we see 3 distinct classes of domain pairs (the number in the column labeled Pairs).
Domain pair (1,1) is in a class by itself (which we call class 1), domain pair (1,4) is also
in a class by itself (class 2), and domain pairs (1,2), (1,3), (1,5), and (1,6) are all
equivalent and are in class 3. Also, in this class, we have {C ′′21|0,−1, 1}(1, 2) = (1, 3),
{E| − 1, 0, 1}(1, 2) = (1, 5), and {C ′′21| − 1

3 ,−
5
3 ,

4
3}(1, 2) = (1, 6).

The pair symmetry group consists of two types of operations that leave the domain pair
invariant: (1) operations that simultaneously leave both SDS’s unchanged and
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(2) operations, if they exist, that interchange (switch) the two SDS’s. We can write this
symmetry group as

Jij = F(i) ∩ F(j) + j′ijF(i) ∩ F(j),

where F(i) is the space group of the ith domain and j′ij is an element that switches the
two SDS’s. The first term, F(i) ∩ F(j), is called the pair intersection group. For example,
we obtain the pair intersection group for the domain pair (1,2):

*VALUE DOMAIN PAIR 1 2

*SHOW PAIRS INTERSECT

*DISPLAY ISOTROPY

Domain Pairs Pair intersect

(1,2) S1

*

The pair intersection group is always one of the other isotropy subgroups. In this case, it
is the isotropy subgroup with the order parameter in the direction S1. We display the
elements, basis vectors of the lattice, and origin of this pair intersection group:

*CANCEL SHOW ALL

*VALUE DIRECTION S1

*SHOW SUBGROUP

*SHOW ELEMENTS

*DISPLAY ISOTROPY

Subgroup Elements

2 P-1 (E|0,0,0), (I|0,0,0)

*CANCEL SHOW ELEMENTS

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Subgroup Basis Vectors Origin

2 P-1 (-4/3,-2/3,1/3),(2/3,-2/3,1/3),(2/3,4/3,1/3) (0,0,0)

*

We can also obtain the element j′12 that switches the two SDS’s.

*CANCEL SHOW ALL

*VALUE DIRECTION P1

*VALUE DOMAIN PAIR 1 2

*SHOW PAIRS SWITCH

*DISPLAY ISOTROPY

Domain Pairs Pair switch

(1,2) (C23’’|-1/3,1/3,1/3)

*

Finally, we obtain the pair group:

*CANCEL SHOW PAIRS SWITCH

*SHOW PAIRS GROUP
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*SHOW PAIRS ELEMENTS

*DISPLAY ISOTROPY

Domain Pairs Pair group Elements

(1,2) 12 C2/m (E|0,0,0), (C23’’|-1/3,1/3,1/3), (I|2/3,4/3,1/3),

(SGv3|1,1,0)

*CANCEL SHOW PAIRS ELEMENTS

*SHOW PAIRS BASIS

*SHOW PAIRS ORIGIN

*DISPLAY ISOTROPY

Domain Pairs Pair group Basis Origin

(1,2) 12 C2/m (-2/3,2/3,2/3),(2,2,0),(0,0,-1) (1/3,2/3,1/6)

*

The next more complicated structure to be considered is a domain twin. A domain twin
can be viewed as two domains, each occupying a half space separated by a specified plane
wall. The wall is specified by a direction n̂ normal to the wall and a point ~P through
which the wall passes. The symmetry group of the twin group consists of four parts and
can be denoted as

J̄ij = F̂ij + t′ijF̂ij + rijF̂ij + s′ijF̂ij .

All four parts leave ~P invariant. In addition, (1) F̂ij contains those elements that leave

Si, Sj , and n̂ invariant (we refer to F̂ij as the twin intersection group), (2) t′ijF̂ij contains
those elements that interchange Si and Sj and reverses n̂ (we refer to t′ij as the switch

both element), (3) rijF̂ij contains those elements that leave Si and Sj invariant and

reverses n̂ (we refer to rij as the switch normal element), (4) s′ijF̂ij contains those
elements that interchange Si and Sj and leave n̂ invariant (we refer to s′ij as the switch

side element). Note that both the twin intersection group F̂ij and the twin group J̄ij are
diperiodic space groups. The lattice for these groups is two-dimensional, and therefore
only two basis vectors of the lattice are given.

As an example, we consider a domain wall between S1 and S2 with position ~P = (0, 0, 0)
and Miller indices (1,1,0). First, we obtain the twin intersection group F̂12.

*CANCEL SHOW ALL

*VALUE DOMAIN PAIR 1 2

*VALUE POSITION 0 0 0

*VALUE NORMAL 1 1 0

*SHOW TWIN INTERSECT GROUP

*SHOW TWIN INTERSECT BASIS

*SHOW TWIN INTERSECT ORIGIN

*SHOW TWIN INTERSECT ELEMENTS

*DISPLAY ISOTROPY

Domain Pairs Twin intersect Basis Origin Elements

(1,2) 1 P1 (-2/3,2/3,-1/3),(0,0,-1) (0,0,0) (E|0,0,0)

*
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We also obtain the switch normal element r12, the switch side element s′12, and the
switch both element t′12.

*CANCEL SHOW TWIN

*SHOW TWIN SWITCH NORMAL

*SHOW TWIN SWITCH SIDE

*SHOW TWIN SWITCH BOTH

*DISPLAY ISOTROPY

Domain Pairs Twin switch normal Twin switch side Twin switch both

(1,2) (I|-2/3,2/3,2/3) (C23’’|-1/3,1/3,1/3) (SGv3|-1/3,1/3,1/3)

*

And finally we obtain the twin symmetry group J̄12. Notice that it is a diperiodic space
group.

*CANCEL SHOW TWIN

*SHOW TWIN GROUP

*SHOW TWIN ELEMENTS

*DISPLAY ISOTROPY

Domain Pairs Twin group Elements

(1,2) 7 P2/b11 (E|0,0,0), (C23’’|-1/3,1/3,-2/3), (I|0,0,0),

(SGv3|-1/3,1/3,-2/3)

*CANCEL SHOW TWIN ELEMENTS

*SHOW TWIN BASIS

*SHOW TWIN ORIGIN

*DISPLAY ISOTROPY

Domain Pairs Twin group Basis Origin

(1,2) 7 P2/b11 (-2/3,2/3,-1/3),(-2/3,2/3,-4/3) (0,0,0)

*

Of course, if the position or orientation of the domain wall is changed, the twin group
will change. Physical properties of materials such as fatigue, polarization switching
voltage, etc. depend on domain wall formation, i.e., placement and orientation.

We now consider the average symmetry of a crystal when more than one domain is
present. We consider as an example a ferroelectric phase transition in a pervoskite crystal
from the cubic space group Pm3̄m to the tetragonal subgroup P4mm (order parameter
P1, irrep Γ−4 ). There are six domain states associated with this phase transition.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 221

*VALUE IRREP GM4-

*VALUE DIRECTION P1

*SHOW DOMAINS

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY
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Domain Dir

1 P1 (a,0,0)

2 (-a,0,0)

3 (0,0,a)

4 (0,0,-a)

5 (0,a,0)

6 (0,-a,0)

*

We now obtain the possible multidomain structures and their average symmetries.

*CANCEL SHOW DOMAINS

*CANCEL SHOW DIRECTION

*SHOW DOMAIN SETS

*SHOW DOMAIN SETS GROUP

*SHOW DOMAIN SETS BASIS

*SHOW DOMAIN SETS ORIGIN

*DISPLAY ISOTROPY

Class Set Sets Group Basis Origin

1 (1,2,3,4,5,6) 221 Pm-3m (0,-1,0),(-1,0,0),(0,0,-1) (0,0,0)

2 (1,2,5,6) 123 P4/mmm (-1,0,0),(0,-1,0),(0,0,1) (0,0,0)

3 (3,4) 123 P4/mmm (-1,0,0),(0,-1,0),(0,0,1) (0,0,0)

4 (1,2),(3,4) 47 Pmmm (-1,0,0),(0,0,1),(0,1,0) (0,0,0)

5 (3) 99 P4mm (-1,0,0),(0,-1,0),(0,0,1) (0,0,0)

6 (1,3,5) 160 R3m (-1,0,1),(0,1,-1),(-1,-1,-1) (0,0,0)

7 (1,2),(5) 25 Pmm2 (-1,0,0),(0,0,1),(0,1,0) (0,0,0)

8 (3,6) 38 Amm2 (-1,0,0),(0,-1,-1),(0,-1,1) (0,0,0)

9 (3),(5) 6 Pm (0,0,-1),(-1,0,0),(0,1,0) (0,0,0)

10 (1,5),(3) 8 Cm (-1,-1,0),(-1,1,0),(0,0,-1) (0,0,0)

11 (1),(3),(5) 1 P1 (-1,0,0),(0,1,0),(0,0,-1) (0,0,0)

*

The symbol for each set displays domain states enclosed in parentheses. The domain
states enclosed within a single set of parentheses are present in equal equal amounts in
the crystal. For example, the set (1,2,3,4,5,6) represents a crystal with all six domains
present in equal amounts. The average symmetry is the full cubic symmetry Pm3̄m of
the parent group. The set (1,2,5,6) represents a crystal with domain states 1,2,5,6
present in equal amounts. Domain states 3 and 4 are not present. The average symmetry
consists of operators which permute the domain states 1,2,5,6.

Domain states enclosed within different sets of parentheses are not present in equal
amounts. For example, the set (1,2),(3,4) represents a crystal with domain states 1,2,3,4
present. Domain states 1 and 2 are present in equal amounts, and domain states 3 and 4
are present in equal amounts, but domain states 1 and 3 are present in unequal amounts,
etc. The average symmetry consists of operators which permute the domain states 1,2
and also permute the domain states 3,4, but do not mix 1 or 2 with 3 or 4.
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We can select a single multidomain structure.

*VALUE DOMAIN SETS CLASS 4

*DISPLAY ISOTROPY

Class Set Sets Group Basis Origin

4 (1,2),(3,4) 47 Pmmm (-1,0,0),(0,0,1),(0,1,0) (0,0,0)

*

Besides the basis vectors and origin of the symmetry group, we can also display the
generators and the elements.

*CANCEL SHOW DOMAIN SETS BASIS

*CANCEL SHOW DOMAIN SETS ORIGIN

*SHOW DOMAIN SETS GENERATORS

*DISPLAY ISOTROPY

Class Set Sets Group Generators

4 (1,2),(3,4) 47 Pmmm (C2y|0,0,0), (C2x|0,0,0), (I|0,0,0)

*CANCEL SHOW DOMAIN SETS GENERATORS

*SHOW DOMAIN SETS ELEMENTS

*DISPLAY ISOTROPY

Class Set Sets Group Elements

4 (1,2),(3,4) 47 Pmmm (E|0,0,0), (C2x|0,0,0), (C2z|0,0,0), (C2y|0,0,0),

(I|0,0,0), (SGx|0,0,0), (SGz|0,0,0), (SGy|0,0,0)

*

The lists above shows only nonequivalent multidomain structures. We can also display
equivalent structures.

*CANCEL SHOW DOMAIN SETS ELEMENTS

*SHOW DOMAIN SETS ALL

*SHOW DOMAIN SETS EQUIVALENT

*DISPLAY ISOTROPY

Class Set Equiv op Sets Group

4 (1,2),(3,4) (E|0,0,0) 47 Pmmm

4 (3,4),(5,6) (C31-|0,0,0) 47 Pmmm

4 (5,6),(1,2) (C31+|0,0,0) 47 Pmmm

4 (5,6),(3,4) (C2b|0,0,0) 47 Pmmm

4 (1,2),(5,6) (C2f|0,0,0) 47 Pmmm

4 (3,4),(1,2) (C2e|0,0,0) 47 Pmmm

*

The equivalence operators shows us how each multidomain structure is related to the first
one on the list. Note that you view equivalent structures only if a class has been selected.

Let us represent multidomain structures with a six-dimensional vector ~s. The
components of ~s represent the relative amounts each domain state is present in a crystal.
To find the most general domain structure associated with a given symmetry, we simply
find the most general form of ~s which is invariant under each operator in the symmetry
group. Let us illustrate this with the present example.
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*SHOW DOMAIN SETS DIRECTION

*DISPLAY ISOTROPY

Dir Domain Sets Dir Sets Group

1 (a,a,a,a,a,a) 221 Pm-3m

2 (a,a,b,b,a,a) 123 P4/mmm

3 (a,a,b,b,c,c) 47 Pmmm

4 (a,a,b,c,a,a) 99 P4mm

5 (a,b,a,b,a,b) 160 R3m

6 (a,a,b,b,c,d) 25 Pmm2

7 (a,a,b,c,c,b) 38 Amm2

8 (a,b,c,c,d,d) 3 P2

9 (a,b,c,c,b,a) 5 C2

10 (a,a,b,c,d,e) 6 Pm

11 (a,b,c,d,a,b) 8 Cm

12 (a,b,c,d,e,f) 1 P1

*

The first entry ~s = (a, a, a, a, a, a) is the structure with all domain states present in equal
amounts: (1,2,3,4,5,6). The second entry is a structure with domain states 1,2,5,6 present
in equal amounts and domain states 3,4 present in equal amounts, i.e., (1,2,5,6),(3,4). Its
symmetry is P4/mmm. It turns out that the symmetry of (1,2,5,6) alone (b = 0) is also
P4/mmm and that of (3,4) alone (a = 0) is P4/mmm. Therefore we list (1,2,5,6) and
(3,4) separately as domain structures. For brevity, we do not list (1,2,5,6),(3,4). We list
only the minimal sets of domain states required for each symmetry.

The list above shows only nonequivalent vectors ~s. To see equivalent vectors, we select
one of the directions. Note that SHOW DOMAIN SETS ALL and SHOW DOMAIN SETS

EQUIVALENT are still in effect. Note that VALUE DOMAIN SETS CLASS only has effect when
viewing classes of sets, whereas VALUE DOMAIN SETS DIRECTION only has effect when
viewing directions of ~s.

*VALUE DOMAIN SETS DIRECTION 6

*DISPLAY ISOTROPY

Dir Domain Sets Dir Equiv op Sets Group

6 (a,a,b,b,c,d) (E|0,0,0) 25 Pmm2

6 (a,a,b,c,d,d) (C31-|0,0,0) 25 Pmm2

6 (a,b,c,c,d,d) (C31+|0,0,0) 25 Pmm2

*

This is the end of this tutorial. You may exit the program.

*QUIT
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Case Study 1: Octahedral Tilting in Perovskites

This case study explains how isotropy was used in the research which resulted in the
publication, Christopher J. Howard and Harold T. Stokes, “Group Theoretical Analysis
of Octahedral Tilting in Perovskites,” Acta Cryst. B, 54, 782–789 (1998).

The perovskites ABX3 have a cubic structure: space group #221 Pm3̄m with atom A at
Wyckoff position b, ( 1

2 ,
1
2 ,

1
2 ), atom B at Wyckoff position a, (0,0,0), and atom X at

Wyckoff position d, ( 1
2 , 0, 0), (0, 12 , 0), (0, 0, 12 ). The X atoms lie on vertices of octahedra

BX6, centered about each B atom. These octahedral are linked, since each X atom is at
the vertex of two adjacent octahedra. We want to find possible phase transitions which
involve tilting of these octahedra.

There are two constraints on this problem. The first constraint is due to the linking of
the octahedra. If the octahedron centered at (0,0,0) tilts about the x axis, then
neighboring octahedra at (0,±1, 0) and (0, 0,±1) must also tilt about the x axis, but in
the opposite direction. In fact, every octahedron in the yz plane must be tilted about the
x axis, half of them in one direction and the other half in the other direction. There is a
similar constraint for tilting about the y and z axes.

The other constraint is one of our own making in order to restrict the scope of our
search. If the octahedron centered at (0,0,0) tilts about the x axis, then, as we saw
above, the tilting of every octahedron in the yz plane is determined. However, we have
the freedom to choose the tilting of octahedra about the x axis in adjacent yz planes. We
will consider two different tilt patterns: (1) the tilting about the x axis in adjacent yz
planes is the same, and (2) the tilting about the x axis in adjacent yz planes is opposite.
Thus, as we move along the x axis, we find tilt patterns which are either + + + + + + . . .
or +−+−+− . . . We use a similar constraint for tilting about the y and z axes as well.

Now let us first find the irreps for which these tilt patterns are basis functions. We find
all possible distortions caused by tilts (pseudovectors) at Wyckoff position a. We

consider only irreps at ~k points of symmetry.

*VALUE PARENT 221

*VALUE WYCKOFF A

*VALUE KDEGREE 0

*VALUE CELL 2,0,0 0,2,0 0,0,2

*SHOW IRREP

*SHOW MICROSCOPIC VECTOR PSEUDO

*DISPLAY DISTORTION

Irrep (ML) Point Projected Pseudo Vectors

GM4+ (0,0,0) (1,0,0), (0,1,0), (0,0,1)

(0,0,1) (1,0,0), (0,1,0), (0,0,1)

(0,1,0) (1,0,0), (0,1,0), (0,0,1)

(0,1,1) (1,0,0), (0,1,0), (0,0,1)

(1,0,0) (1,0,0), (0,1,0), (0,0,1)

(1,0,1) (1,0,0), (0,1,0), (0,0,1)
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(1,1,0) (1,0,0), (0,1,0), (0,0,1)

(1,1,1) (1,0,0), (0,1,0), (0,0,1)

R4+ (0,0,0) (0,0,1), (1,0,0), (0,1,0)

(0,0,1) (0,0,-1), (-1,0,0), (0,-1,0)

(0,1,0) (0,0,-1), (-1,0,0), (0,-1,0)

(0,1,1) (0,0,1), (1,0,0), (0,1,0)

(1,0,0) (0,0,-1), (-1,0,0), (0,-1,0)

(1,0,1) (0,0,1), (1,0,0), (0,1,0)

(1,1,0) (0,0,1), (1,0,0), (0,1,0)

(1,1,1) (0,0,-1), (-1,0,0), (0,-1,0)

X3+ (0,0,0) (0,-1,0), (0,0,-1), (1,0,0)

(0,0,1) (0,-1,0), (0,0,1), (1,0,0)

(0,1,0) (0,1,0), (0,0,-1), (1,0,0)

(0,1,1) (0,1,0), (0,0,1), (1,0,0)

(1,0,0) (0,-1,0), (0,0,-1), (-1,0,0)

(1,0,1) (0,-1,0), (0,0,1), (-1,0,0)

(1,1,0) (0,1,0), (0,0,-1), (-1,0,0)

(1,1,1) (0,1,0), (0,0,1), (-1,0,0)

X5+ (0,0,0) (1,0,1), (1,0,-1), (1,1,0), (-1,1,0), (0,1,1), (0,-1,1)

(0,0,1) (1,0,1), (1,0,-1), (-1,-1,0), (1,-1,0), (0,1,1), (0,-1,1)

(0,1,0) (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,1,1), (0,-1,1)

(0,1,1) (-1,0,-1), (-1,0,1), (-1,-1,0), (1,-1,0), (0,1,1), (0,-1,1)

(1,0,0) (1,0,1), (1,0,-1), (1,1,0), (-1,1,0), (0,-1,-1), (0,1,-1)

(1,0,1) (1,0,1), (1,0,-1), (-1,-1,0), (1,-1,0), (0,-1,-1), (0,1,-1)

(1,1,0) (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,-1,-1), (0,1,-1)

(1,1,1) (-1,0,-1), (-1,0,1), (-1,-1,0), (1,-1,0), (0,-1,-1), (0,1,-1)

M3+ (0,0,0) (0,0,1), (1,0,0), (0,1,0)

(0,0,1) (0,0,1), (-1,0,0), (0,-1,0)

(0,1,0) (0,0,-1), (-1,0,0), (0,1,0)

(0,1,1) (0,0,-1), (1,0,0), (0,-1,0)

(1,0,0) (0,0,-1), (1,0,0), (0,-1,0)

(1,0,1) (0,0,-1), (-1,0,0), (0,1,0)

(1,1,0) (0,0,1), (-1,0,0), (0,-1,0)

(1,1,1) (0,0,1), (1,0,0), (0,1,0)

M5+ (0,0,0) (1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)

(0,0,1) (1,0,1), (1,0,-1), (1,-1,0), (-1,-1,0), (0,-1,-1), (0,1,-1)

(0,1,0) (-1,0,1), (-1,0,-1), (-1,-1,0), (1,-1,0), (0,1,1), (0,-1,1)

(0,1,1) (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,1,-1), (0,-1,-1)

(1,0,0) (-1,0,-1), (-1,0,1), (1,1,0), (-1,1,0), (0,1,-1), (0,-1,-1)

(1,0,1) (-1,0,1), (-1,0,-1), (-1,-1,0), (1,-1,0), (0,1,1), (0,-1,1)

(1,1,0) (1,0,1), (1,0,-1), (1,-1,0), (-1,-1,0), (0,-1,-1), (0,1,-1)

(1,1,1) (1,0,-1), (1,0,1), (-1,1,0), (1,1,0), (0,-1,1), (0,1,1)

*
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We find 24 tilt patterns, three from each of the three-dimensional irreps, Γ+
4 , R+

4 , X+
3 ,

M+
3 and six from each of the six-dimensional irreps, X+

5 , M+
5 . Most of these tilt patterns

violate the constraint due to linking of the octahedra. We find the tilt patterns of
interest by inspection of the projected pseudo vectors above. The + + + + + + . . .
pattern belongs to M+

3 , and the +−+−+− . . . pattern belongs to R+
4 . These are both

three-dimensional irreps. By inspection, we also see that the tilts for the three basis
functions are about the z, x, and y axes, respectively.

Now we find the isotropy subgroups. First of all, we find the subgroups for the uncoupled
order parameters.

*SHOW DIRECTION VECTOR

*SHOW BASIS

*SHOW ORIGIN

*SHOW SUBGROUP

*VALUE IRREP M3+

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Basis Vectors Origin

M3+ 127 P4/mbm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,1) (0,0,0)

M3+ 204 Im-3 P3 (a,a,a) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)

M3+ 139 I4/mmm P2 (a,a,0) (0,0,2),(2,0,0),(0,2,0) (3/2,1/2,1/2)

M3+ 71 Immm S1 (a,b,c) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,1/2)

*VALUE IRREP R4+

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Basis Vectors Origin

R4+ 167 R-3c P3 (a,a,a) (-1,1,0),(0,-1,1),(2,2,2) (0,0,0)

R4+ 140 I4/mcm P1 (a,0,0) (1,1,0),(-1,1,0),(0,0,2) (0,0,0)

R4+ 74 Imma P2 (a,a,0) (1,0,1),(0,2,0),(-1,0,1) (0,0,0)

R4+ 15 C2/c C2 (a,a,b) (-1,2,-1),(-1,0,1),(1,0,1) (0,1/2,1/2)

R4+ 12 C2/m C1 (a,b,0) (0,0,-2),(0,2,0),(1,0,1) (0,1/2,1/2)

R4+ 2 P-1 S1 (a,b,c) (0,1,1),(1,0,1),(1,1,0) (0,0,0)

*

Let us consider the interpretation of this data. The subgroup in direction P1 (a, 0, 0)
involves tilting about the z axis only. The subgroup in direction P2 (a, a, 0) involves
tilting about both the z and x axes. Since the first two components of the order
parameter ~η are equal, the tilts about the z and x axes are equal. On the other hand, the
subgroup in direction C1 (a, b, 0) involves tilts about the z and x axes that are unequal.

Let us next find the isotropy subgroups for the coupled order parameters.

*VALUE IRREP M3+ R4+

*CANCEL SHOW IRREP

*DISPLAY ISOTROPY COUPLED

Subgroup Dir Basis Vectors Origin

148 R-3 P3(1)P3(1) (a,a,a,b,b,b) (-2,0,2),(2,-2,0),(2,2,2) (0,0,0)

127 P4/mbm P1(1)P1(1) (a,0,0,b,0,0) (1,1,0),(-1,1,0),(0,0,2) (0,0,0)
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63 Cmcm P1(1)P1(2) (a,0,0,0,0,b) (2,0,0),(0,2,0),(0,0,2) (1/2,-1/2,0)

137 P4_2/nmc P2(1)P1(2) (a,a,0,0,0,b) (0,0,2),(2,0,0),(0,2,0) (0,-1,0)

59 Pmmn S1(1)P1(1) (a,b,c,d,0,0) (2,0,0),(0,2,0),(0,0,2) (0,0,0)

62 Pnma P1(1)P2(5) (a,0,0,0,b,b) (1,1,0),(0,0,2),(1,-1,0) (0,0,0)

63 Cmcm P2(1)P2(1) (a,a,0,b,b,0) (2,0,2),(2,0,-2),(0,2,0) (0,0,0)

14 P2_1/c P1(1)C2(9) (a,0,0,c,b,b) (0,0,2),(1,-1,0),(1,1,0) (0,0,0)

15 C2/c P2(1)C2(1) (a,a,0,b,b,c) (2,0,2),(-2,0,2),(0,-2,0) (0,0,0)

12 C2/m P1(1)C1(1) (a,0,0,b,c,0) (2,0,0),(0,2,0),(0,0,2) (1/2,1/2,0)

11 P2_1/m P1(1)C1(5) (a,0,0,0,b,c) (-1,1,0),(0,0,2),(1,1,0) (0,0,0)

11 P2_1/m S1(1)C1(1) (a,b,c,d,e,0) (2,0,0),(0,2,0),(0,0,2) (0,0,0)

2 P-1 P1(1)S1(1) (a,0,0,b,c,d) (0,0,2),(1,1,0),(-1,1,0) (0,0,0)

2 P-1 S1(1)S1(1) (a,b,c,d,e,f) (0,0,2),(0,2,0),(-2,0,0) (0,0,0)

*

We now use our second constraint to eliminate some of these. A superposition of a
+ + + + + + . . . and a +−+−+− . . . tilt pattern (around the same axis) yields a
pattern where adjacent planes contain tilts which are neither the same nor opposite.
These are tilt patterns beyond the scope of our present interest. This means that if any
component of the order parameter for M+

3 is nonzero, then that component of the order
parameter for R+

4 must be zero, and vice versa. We thus obtain the following list of
allowable isotropy subgroups for the coupled order parameters:

Subgroup Dir Basis Vectors Origin

63 Cmcm P1(1)P1(2) (a,0,0,0,0,b) (2,0,0),(0,2,0),(0,0,2) (1/2,-1/2,0)

137 P4_2/nmc P2(1)P1(2) (a,a,0,0,0,b) (0,0,2),(2,0,0),(0,2,0) (0,-1,0)

62 Pnma P1(1)P2(5) (a,0,0,0,b,b) (1,1,0),(0,0,2),(1,-1,0) (0,0,0)

11 P2_1/m P1(1)C1(5) (a,0,0,0,b,c) (-1,1,0),(0,0,2),(1,1,0) (0,0,0)

As an example of how to interpret these tilt patterns, we see that the subgroup in
direction P1(1)P1(2) involves tilting about the z axis with the + + + + + + . . . pattern
superimposed on tilting about the y axis with the +−+−+− . . . pattern.

This is the end of this case study. You may exit the program:

*QUIT
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BaAl2O4 belongs to the family of stuffed tridymites. Corner-sharing AlO4 tetrahedra
form a three-dimensional network with hexagonal channels filled with Ba atoms.
BaAl2O4 exhibits a ferroelectric phase transition at 396 K. The structure of the
high-temperature paraelectric phase was proposed by Abakumov et al., Phase
Transitions 71, 143 (2000) to be #182 P6322. The structure of the ferroelectric phase
was known to be #173 P63. In the transition, the dimensions of the unit cell are doubled
in the ab plane. We will first find this phase transition in the data base. We search for all
phase transitions from space group #182 to space group #173 with a unit cell that
increases in size by a factor of four.

*VALUE PARENT 182

*VALUE SUBGROUP 173

*VALUE SIZE 4

*SHOW IRREP

*SHOW DIRECTION VECTOR

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir Basis Vectors Origin

M2 173 P6_3 P3 (a,a,a) (2,0,0),(0,2,0),(0,0,1) (0,0,0)

*

We found one, and we see from the basis vectors that the value of a doubles in size, in
agreement with known facts. The direction of the order parameter is (a, a, a), denoted by
our symbol P3. This order parameter, which belongs to the irrep M2, is the primary
order parameter. It completely determines the symmetry of the ferroelectric phase. We
now find the secondary order parameters.

*CANCEL SHOW DIRECTION

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW FREQUENCY DIRECTION

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Frequency

M2 173 P6_3 1 GM1 P1(1), 1 GM2 P1(1), 1 M1 P3(1), 1 M2 P3(1)

*

The secondary order parameters belong to the irreps M1, Γ2, and Γ1. We find the
symmetry of the isotropy subgroups determined by these order parameters.

*CANCEL SHOW FREQUENCY

*CANCEL VALUE SUBGROUP

*CANCEL VALUE SIZE

*SHOW BASIS

*SHOW ORIGIN

61
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*VALUE IRREP M1

*VALUE DIRECTION P3

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Basis Vectors Origin

M1 182 P6_322 (2,0,0),(0,2,0),(0,0,1) (0,0,0)

*VALUE IRREP GM2

*VALUE DIRECTION P1

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Basis Vectors Origin

GM2 173 P6_3 (1,0,0),(0,1,0),(0,0,1) (0,0,0)

*VALUE IRREP GM1

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Basis Vectors Origin

GM1 182 P6_322 (1,0,0),(0,1,0),(0,0,1) (0,0,0)

*

Next, we find the mapping of the atomic positions in the paraelectric phase to positions
in the ferroelectric phase. In the paraelectric phase, the Ba atoms are at Wyckoff position
b, the Al atoms are at f (z ≈ 0.058), and the O atoms are at c and g (x ≈ 0.352).

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*VALUE WYCKOFF B F C G

*SHOW WYCKOFF SUBGROUP

*VALUE IRREP M2

*VALUE DIRECTION P3

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Wyckoff New Wyckoff

M2 173 P6_3 b a, z’=1/4

c, x’=0, y’=1/2, z’=1/4

f c, x’=1/6, y’=1/3, z’=z

c, x’=5/6, y’=2/3, z’=-z

b, z’=1/2+z

b, z’=-z

c c, x’=1/6, y’=1/3, z’=1/4

b, z’=3/4

g c, x’=1/2x, y’=0, z’=0

c, x’=1/2x, y’=1/2, z’=0

c, x’=1/2x, y’=1/2+1/2x, z’=1/2

c, x’=0, y’=1/2+1/2x, z’=0

*

Finally, we find the distortions allowed by each of the order parameters.

*SHOW WYCKOFF

*SHOW MICROSCOPIC VECTOR

*DISPLAY DISTORTION
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Irrep (ML) Wyckoff Point Projected Vectors

M2 b (0,0,1/4) (0,0,3)

(0,1,1/4) (0,0,-1)

(1,0,1/4) (0,0,-1)

(1,1,1/4) (0,0,-1)

(0,0,3/4) (0,0,3)

(0,1,3/4) (0,0,-1)

(1,0,3/4) (0,0,-1)

(1,1,3/4) (0,0,-1)

M2 b (0,0,1/4) (0,0,0)

(0,1,1/4) (0,-2,0)

(1,0,1/4) (-2,0,0)

(1,1,1/4) (2,2,0)

(0,0,3/4) (0,0,0)

(0,1,3/4) (0,2,0)

(1,0,3/4) (2,0,0)

(1,1,3/4) (-2,-2,0)

M2 c (1/3,2/3,1/4) (0,0,1)

(1/3,5/3,1/4) (0,0,1)

(4/3,2/3,1/4) (0,0,-3)

(4/3,5/3,1/4) (0,0,1)

(-1/3,1/3,3/4) (0,0,1)

(-1/3,4/3,3/4) (0,0,1)

(2/3,1/3,3/4) (0,0,1)

(2/3,4/3,3/4) (0,0,-3)

M2 c (1/3,2/3,1/4) (2,0,0)

(1/3,5/3,1/4) (-2,-2,0)

(4/3,2/3,1/4) (0,0,0)

(4/3,5/3,1/4) (0,2,0)

(-1/3,1/3,3/4) (2,2,0)

(-1/3,4/3,3/4) (-2,0,0)

(2/3,1/3,3/4) (0,-2,0)

(2/3,4/3,3/4) (0,0,0)

M2 f (1/3,2/3,z) (0,0,1)

(1/3,5/3,z) (0,0,1)

(4/3,2/3,z) (0,0,-3)

(4/3,5/3,z) (0,0,1)

(-1/3,1/3,z+1/2) (0,0,1)

(-1/3,4/3,z+1/2) (0,0,1)

(2/3,1/3,z+1/2) (0,0,1)

(2/3,4/3,z+1/2) (0,0,-3)

(-1/3,-2/3,-z) (0,0,1)

(-1/3,1/3,-z) (0,0,1)

(2/3,-2/3,-z) (0,0,-3)

(2/3,1/3,-z) (0,0,1)
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(1/3,-1/3,-z+1/2) (0,0,1)

(1/3,2/3,-z+1/2) (0,0,1)

(4/3,-1/3,-z+1/2) (0,0,1)

(4/3,2/3,-z+1/2) (0,0,-3)

M2 f (1/3,2/3,z) (2,2,0)

(1/3,5/3,z) (0,-2,0)

(4/3,2/3,z) (0,0,0)

(4/3,5/3,z) (-2,0,0)

(-1/3,1/3,z+1/2) (0,2,0)

(-1/3,4/3,z+1/2) (-2,-2,0)

(2/3,1/3,z+1/2) (2,0,0)

(2/3,4/3,z+1/2) (0,0,0)

(-1/3,-2/3,-z) (0,2,0)

(-1/3,1/3,-z) (2,0,0)

(2/3,-2/3,-z) (0,0,0)

(2/3,1/3,-z) (-2,-2,0)

(1/3,-1/3,-z+1/2) (-2,0,0)

(1/3,2/3,-z+1/2) (0,-2,0)

(4/3,-1/3,-z+1/2) (2,2,0)

(4/3,2/3,-z+1/2) (0,0,0)

M2 f (1/3,2/3,z) (0,-2,0)

(1/3,5/3,z) (-2,0,0)

(4/3,2/3,z) (0,0,0)

(4/3,5/3,z) (2,2,0)

(-1/3,1/3,z+1/2) (2,0,0)

(-1/3,4/3,z+1/2) (0,2,0)

(2/3,1/3,z+1/2) (-2,-2,0)

(2/3,4/3,z+1/2) (0,0,0)

(-1/3,-2/3,-z) (-2,-2,0)

(-1/3,1/3,-z) (0,2,0)

(2/3,-2/3,-z) (0,0,0)

(2/3,1/3,-z) (2,0,0)

(1/3,-1/3,-z+1/2) (0,-2,0)

(1/3,2/3,-z+1/2) (2,2,0)

(4/3,-1/3,-z+1/2) (-2,0,0)

(4/3,2/3,-z+1/2) (0,0,0)

M2 g (x,0,0) (0,0,0)

(x,1,0) (2,0,0)

(x+1,0,0) (0,0,0)

(x+1,1,0) (-2,0,0)

(x,x,1/2) (0,0,0)

(x,x+1,1/2) (-2,-2,0)

(x+1,x,1/2) (2,2,0)

(x+1,x+1,1/2) (0,0,0)

(0,x,0) (0,0,0)
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(0,x+1,0) (0,0,0)

(1,x,0) (0,-2,0)

(1,x+1,0) (0,2,0)

(-x,0,1/2) (0,0,0)

(-x,1,1/2) (-2,0,0)

(-x+1,0,1/2) (0,0,0)

(-x+1,1,1/2) (2,0,0)

(-x,-x,0) (0,0,0)

(-x,-x+1,0) (2,2,0)

(-x+1,-x,0) (-2,-2,0)

(-x+1,-x+1,0) (0,0,0)

(0,-x,1/2) (0,0,0)

(0,-x+1,1/2) (0,0,0)

(1,-x,1/2) (0,2,0)

(1,-x+1,1/2) (0,-2,0)

M2 g (x,0,0) (1.155,2.309,0)

(x,1,0) (0,0,0)

(x+1,0,0) (-1.155,-2.309,0)

(x+1,1,0) (0,0,0)

(x,x,1/2) (-1.155,1.155,0)

(x,x+1,1/2) (0,0,0)

(x+1,x,1/2) (0,0,0)

(x+1,x+1,1/2) (1.155,-1.155,0)

(0,x,0) (-2.309,-1.155,0)

(0,x+1,0) (2.309,1.155,0)

(1,x,0) (0,0,0)

(1,x+1,0) (0,0,0)

(-x,0,1/2) (-1.155,-2.309,0)

(-x,1,1/2) (0,0,0)

(-x+1,0,1/2) (1.155,2.309,0)

(-x+1,1,1/2) (0,0,0)

(-x,-x,0) (1.155,-1.155,0)

(-x,-x+1,0) (0,0,0)

(-x+1,-x,0) (0,0,0)

(-x+1,-x+1,0) (-1.155,1.155,0)

(0,-x,1/2) (2.309,1.155,0)

(0,-x+1,1/2) (-2.309,-1.155,0)

(1,-x,1/2) (0,0,0)

(1,-x+1,1/2) (0,0,0)

M2 g (x,0,0) (0.577,1.155,0)

(x,1,0) (-0.577,-1.155,0)

(x+1,0,0) (0.577,1.155,0)

(x+1,1,0) (-0.577,-1.155,0)

(x,x,1/2) (-0.577,0.577,0)

(x,x+1,1/2) (0.577,-0.577,0)
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(x+1,x,1/2) (0.577,-0.577,0)

(x+1,x+1,1/2) (-0.577,0.577,0)

(0,x,0) (-1.155,-0.577,0)

(0,x+1,0) (-1.155,-0.577,0)

(1,x,0) (1.155,0.577,0)

(1,x+1,0) (1.155,0.577,0)

(-x,0,1/2) (-0.577,-1.155,0)

(-x,1,1/2) (0.577,1.155,0)

(-x+1,0,1/2) (-0.577,-1.155,0)

(-x+1,1,1/2) (0.577,1.155,0)

(-x,-x,0) (0.577,-0.577,0)

(-x,-x+1,0) (-0.577,0.577,0)

(-x+1,-x,0) (-0.577,0.577,0)

(-x+1,-x+1,0) (0.577,-0.577,0)

(0,-x,1/2) (1.155,0.577,0)

(0,-x+1,1/2) (1.155,0.577,0)

(1,-x,1/2) (-1.155,-0.577,0)

(1,-x+1,1/2) (-1.155,-0.577,0)

M2 g (x,0,0) (0,0,2)

(x,1,0) (0,0,0)

(x+1,0,0) (0,0,-2)

(x+1,1,0) (0,0,0)

(x,x,1/2) (0,0,2)

(x,x+1,1/2) (0,0,0)

(x+1,x,1/2) (0,0,0)

(x+1,x+1,1/2) (0,0,-2)

(0,x,0) (0,0,2)

(0,x+1,0) (0,0,-2)

(1,x,0) (0,0,0)

(1,x+1,0) (0,0,0)

(-x,0,1/2) (0,0,2)

(-x,1,1/2) (0,0,0)

(-x+1,0,1/2) (0,0,-2)

(-x+1,1,1/2) (0,0,0)

(-x,-x,0) (0,0,2)

(-x,-x+1,0) (0,0,0)

(-x+1,-x,0) (0,0,0)

(-x+1,-x+1,0) (0,0,-2)

(0,-x,1/2) (0,0,2)

(0,-x+1,1/2) (0,0,-2)

(1,-x,1/2) (0,0,0)

(1,-x+1,1/2) (0,0,0)

M2 g (x,0,0) (0,0,1)

(x,1,0) (0,0,-1)

(x+1,0,0) (0,0,1)
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(x+1,1,0) (0,0,-1)

(x,x,1/2) (0,0,1)

(x,x+1,1/2) (0,0,-1)

(x+1,x,1/2) (0,0,-1)

(x+1,x+1,1/2) (0,0,1)

(0,x,0) (0,0,1)

(0,x+1,0) (0,0,1)

(1,x,0) (0,0,-1)

(1,x+1,0) (0,0,-1)

(-x,0,1/2) (0,0,1)

(-x,1,1/2) (0,0,-1)

(-x+1,0,1/2) (0,0,1)

(-x+1,1,1/2) (0,0,-1)

(-x,-x,0) (0,0,1)

(-x,-x+1,0) (0,0,-1)

(-x+1,-x,0) (0,0,-1)

(-x+1,-x+1,0) (0,0,1)

(0,-x,1/2) (0,0,1)

(0,-x+1,1/2) (0,0,1)

(1,-x,1/2) (0,0,-1)

(1,-x+1,1/2) (0,0,-1)

*VALUE IRREP M1

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Projected Vectors

M1 b (0,0,1/4) (0,0,0)

(0,1,1/4) (2.309,1.155,0)

(1,0,1/4) (-1.155,-2.309,0)

(1,1,1/4) (-1.155,1.155,0)

(0,0,3/4) (0,0,0)

(0,1,3/4) (-2.309,-1.155,0)

(1,0,3/4) (1.155,2.309,0)

(1,1,3/4) (1.155,-1.155,0)

M1 c (1/3,2/3,1/4) (1.155,2.309,0)

(1/3,5/3,1/4) (1.155,-1.155,0)

(4/3,2/3,1/4) (0,0,0)

(4/3,5/3,1/4) (-2.309,-1.155,0)

(-1/3,1/3,3/4) (-1.155,1.155,0)

(-1/3,4/3,3/4) (-1.155,-2.309,0)

(2/3,1/3,3/4) (2.309,1.155,0)

(2/3,4/3,3/4) (0,0,0)

M1 f (1/3,2/3,z) (0,0,1)

(1/3,5/3,z) (0,0,1)

(4/3,2/3,z) (0,0,-3)

(4/3,5/3,z) (0,0,1)

(-1/3,1/3,z+1/2) (0,0,1)
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(-1/3,4/3,z+1/2) (0,0,1)

(2/3,1/3,z+1/2) (0,0,1)

(2/3,4/3,z+1/2) (0,0,-3)

(-1/3,-2/3,-z) (0,0,-1)

(-1/3,1/3,-z) (0,0,-1)

(2/3,-2/3,-z) (0,0,3)

(2/3,1/3,-z) (0,0,-1)

(1/3,-1/3,-z+1/2) (0,0,-1)

(1/3,2/3,-z+1/2) (0,0,-1)

(4/3,-1/3,-z+1/2) (0,0,-1)

(4/3,2/3,-z+1/2) (0,0,3)

M1 f (1/3,2/3,z) (2,2,0)

(1/3,5/3,z) (0,-2,0)

(4/3,2/3,z) (0,0,0)

(4/3,5/3,z) (-2,0,0)

(-1/3,1/3,z+1/2) (0,2,0)

(-1/3,4/3,z+1/2) (-2,-2,0)

(2/3,1/3,z+1/2) (2,0,0)

(2/3,4/3,z+1/2) (0,0,0)

(-1/3,-2/3,-z) (0,-2,0)

(-1/3,1/3,-z) (-2,0,0)

(2/3,-2/3,-z) (0,0,0)

(2/3,1/3,-z) (2,2,0)

(1/3,-1/3,-z+1/2) (2,0,0)

(1/3,2/3,-z+1/2) (0,2,0)

(4/3,-1/3,-z+1/2) (-2,-2,0)

(4/3,2/3,-z+1/2) (0,0,0)

M1 f (1/3,2/3,z) (0,-2,0)

(1/3,5/3,z) (-2,0,0)

(4/3,2/3,z) (0,0,0)

(4/3,5/3,z) (2,2,0)

(-1/3,1/3,z+1/2) (2,0,0)

(-1/3,4/3,z+1/2) (0,2,0)

(2/3,1/3,z+1/2) (-2,-2,0)

(2/3,4/3,z+1/2) (0,0,0)

(-1/3,-2/3,-z) (2,2,0)

(-1/3,1/3,-z) (0,-2,0)

(2/3,-2/3,-z) (0,0,0)

(2/3,1/3,-z) (-2,0,0)

(1/3,-1/3,-z+1/2) (0,2,0)

(1/3,2/3,-z+1/2) (-2,-2,0)

(4/3,-1/3,-z+1/2) (2,0,0)

(4/3,2/3,-z+1/2) (0,0,0)

M1 g (x,0,0) (2,0,0)

(x,1,0) (0,0,0)
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(x+1,0,0) (-2,0,0)

(x+1,1,0) (0,0,0)

(x,x,1/2) (2,2,0)

(x,x+1,1/2) (0,0,0)

(x+1,x,1/2) (0,0,0)

(x+1,x+1,1/2) (-2,-2,0)

(0,x,0) (0,2,0)

(0,x+1,0) (0,-2,0)

(1,x,0) (0,0,0)

(1,x+1,0) (0,0,0)

(-x,0,1/2) (-2,0,0)

(-x,1,1/2) (0,0,0)

(-x+1,0,1/2) (2,0,0)

(-x+1,1,1/2) (0,0,0)

(-x,-x,0) (-2,-2,0)

(-x,-x+1,0) (0,0,0)

(-x+1,-x,0) (0,0,0)

(-x+1,-x+1,0) (2,2,0)

(0,-x,1/2) (0,-2,0)

(0,-x+1,1/2) (0,2,0)

(1,-x,1/2) (0,0,0)

(1,-x+1,1/2) (0,0,0)

M1 g (x,0,0) (1,0,0)

(x,1,0) (-1,0,0)

(x+1,0,0) (1,0,0)

(x+1,1,0) (-1,0,0)

(x,x,1/2) (1,1,0)

(x,x+1,1/2) (-1,-1,0)

(x+1,x,1/2) (-1,-1,0)

(x+1,x+1,1/2) (1,1,0)

(0,x,0) (0,1,0)

(0,x+1,0) (0,1,0)

(1,x,0) (0,-1,0)

(1,x+1,0) (0,-1,0)

(-x,0,1/2) (-1,0,0)

(-x,1,1/2) (1,0,0)

(-x+1,0,1/2) (-1,0,0)

(-x+1,1,1/2) (1,0,0)

(-x,-x,0) (-1,-1,0)

(-x,-x+1,0) (1,1,0)

(-x+1,-x,0) (1,1,0)

(-x+1,-x+1,0) (-1,-1,0)

(0,-x,1/2) (0,-1,0)

(0,-x+1,1/2) (0,-1,0)

(1,-x,1/2) (0,1,0)
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(1,-x+1,1/2) (0,1,0)

M1 g (x,0,0) (0,0,0)

(x,1,0) (1.155,2.309,0)

(x+1,0,0) (0,0,0)

(x+1,1,0) (-1.155,-2.309,0)

(x,x,1/2) (0,0,0)

(x,x+1,1/2) (1.155,-1.155,0)

(x+1,x,1/2) (-1.155,1.155,0)

(x+1,x+1,1/2) (0,0,0)

(0,x,0) (0,0,0)

(0,x+1,0) (0,0,0)

(1,x,0) (2.309,1.155,0)

(1,x+1,0) (-2.309,-1.155,0)

(-x,0,1/2) (0,0,0)

(-x,1,1/2) (-1.155,-2.309,0)

(-x+1,0,1/2) (0,0,0)

(-x+1,1,1/2) (1.155,2.309,0)

(-x,-x,0) (0,0,0)

(-x,-x+1,0) (-1.155,1.155,0)

(-x+1,-x,0) (1.155,-1.155,0)

(-x+1,-x+1,0) (0,0,0)

(0,-x,1/2) (0,0,0)

(0,-x+1,1/2) (0,0,0)

(1,-x,1/2) (-2.309,-1.155,0)

(1,-x+1,1/2) (2.309,1.155,0)

M1 g (x,0,0) (0,0,0)

(x,1,0) (0,0,2)

(x+1,0,0) (0,0,0)

(x+1,1,0) (0,0,-2)

(x,x,1/2) (0,0,0)

(x,x+1,1/2) (0,0,-2)

(x+1,x,1/2) (0,0,2)

(x+1,x+1,1/2) (0,0,0)

(0,x,0) (0,0,0)

(0,x+1,0) (0,0,0)

(1,x,0) (0,0,-2)

(1,x+1,0) (0,0,2)

(-x,0,1/2) (0,0,0)

(-x,1,1/2) (0,0,2)

(-x+1,0,1/2) (0,0,0)

(-x+1,1,1/2) (0,0,-2)

(-x,-x,0) (0,0,0)

(-x,-x+1,0) (0,0,-2)

(-x+1,-x,0) (0,0,2)

(-x+1,-x+1,0) (0,0,0)
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(0,-x,1/2) (0,0,0)

(0,-x+1,1/2) (0,0,0)

(1,-x,1/2) (0,0,-2)

(1,-x+1,1/2) (0,0,2)

*VALUE IRREP GM2

*VALUE DIRECTION P1

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Projected Vectors

GM2 b (0,0,1/4) (0,0,1)

(0,0,3/4) (0,0,1)

GM2 c (1/3,2/3,1/4) (0,0,1)

(-1/3,1/3,3/4) (0,0,1)

GM2 f (1/3,2/3,z) (0,0,1)

(-1/3,1/3,z+1/2) (0,0,1)

(-1/3,-2/3,-z) (0,0,1)

(1/3,-1/3,-z+1/2) (0,0,1)

GM2 g (x,0,0) (0.577,1.155,0)

(x,x,1/2) (-0.577,0.577,0)

(0,x,0) (-1.155,-0.577,0)

(-x,0,1/2) (-0.577,-1.155,0)

(-x,-x,0) (0.577,-0.577,0)

(0,-x,1/2) (1.155,0.577,0)

GM2 g (x,0,0) (0,0,1)

(x,x,1/2) (0,0,1)

(0,x,0) (0,0,1)

(-x,0,1/2) (0,0,1)

(-x,-x,0) (0,0,1)

(0,-x,1/2) (0,0,1)

*VALUE IRREP GM1

*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Projected Vectors

GM1 f (1/3,2/3,z) (0,0,1)

(-1/3,1/3,z+1/2) (0,0,1)

(-1/3,-2/3,-z) (0,0,-1)

(1/3,-1/3,-z+1/2) (0,0,-1)

GM1 g (x,0,0) (1,0,0)

(x,x,1/2) (1,1,0)

(0,x,0) (0,1,0)

(-x,0,1/2) (-1,0,0)

(-x,-x,0) (-1,-1,0)

(0,-x,1/2) (0,-1,0)

*
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We see that there are 12 M2 distortions, 9 M1 distortions, 5 Γ2 distortions, and 2 Γ1

distortions. The net distortion that takes place in the phase transition is some linear
combination of these distortions.

Note that four of the Γ2 distortions are simply translations of the atoms along the c axis.
A linear combination of these will generally result in a net electric dipole moment in the
unit cell, causing a spontaneous polarization field characteristic of a ferroelectric phase.

The two Γ1 distortions preserve the symmetry of the paraelectric phase. They simply
change the values of the z parameter of the Al atoms in the f position and the x
parameter of the O atoms in the g position.

Finally, we obtain invariant polynomials up to fourth degree in the order parameters. We
include polynomials which contain contributions from more than a single irrep.

*VALUE IRREP M2 M1 GM1 GM2

*VALUE DIRECTION P3 P3 P1 P1

*DISPLAY INVARIANT

Irrep (ML) Deg Invariants

M2P3,M1P3,GM2P1,GM1P1 1 n4

2 n4^2

2 n1^2

2 n2^2

2 n3^2

3 n4^3

3 n1^2n4

3 n2^2n4

3 n3^2n4

3 n1^2n2

3 n1n2n3

3 n2^3

4 n4^4

4 n1^2n4^2

4 n1^4

4 n2^2n4^2

4 n1^2n2^2

4 n2^4

4 n3^2n4^2

4 n1^2n3^2

4 n2^2n3^2

4 n3^4

4 n1^2n2n4

4 n1n2n3n4

4 n2^3n4

4 n1^3n3

4 n1n2^2n3

*
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In the above results, η1, η2, η3, η4 refer to the order parameter (η1, η1, η1) for M2

(direction P3), the order parameter (η2, η2, η2) for M1 (direction P3), the order
parameter (η3) for Γ2, and the order parameter (η4) for Γ1, respectively. The form of the
Landau free energy expanded in powers of the order parameters is simply a linear
combination of the above polynomials.

This is the end of this case study. You may exit the program:

*QUIT
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Case Study 3: Reconstructive Phase Transition in NaCl

At ≈ 30 GPa, NaCl undergoes a phase transition from its usual fcc structure (space
group G1 = Fm3̄m) to a CsCl-like structure (space group G2 = Pm3̄m). This phase
transition takes place via an intermediate unstable structure with symmetry G which is a
subgroup of both G1 and G2. The crystalline structure evolves from G1 to G2 along
some path with symmetry G.

Group theoretically, we treat G1 like the parent phase. At the transition, distortions
(strains and atomic displacements) appear which lower the symmetry to G. These
distortions evolve along the path from G1 to G2 until they reach some particular values
where the symmetry suddenly increases to G2.

The distortions that take the crystal from G1 to G can, as usual, be decomposed into
parts that belong to different irreps. The goal of this case study is to obtain this
decomposition.

First, we will gather some general information which will save us time and effort later.
Strains are rank-two symmetric tensors. They always belong to irreps at the Γ point. We
find which irreps are associated with strains:

*VALUE PARENT 225

*VALUE RANK [12]

*VALUE KPOINT GM

*SHOW MACROSCOPIC

*SHOW IRREP

*DISPLAY DISTORTION

Irrep (ML) Basis Functions

GM1+ xx+yy+zz

GM3+ xx+yy-2zz,1.732xx-1.732yy

GM5+ xy,yz,xz

*

We see that only the irreps Γ+
1 , Γ+

3 , Γ+
5 are associated with strains. Using the notation

e = (x2, y2, z2, xy, yz, zx) for the strain tensor elements, we see that the strains
associated with these irreps are

Γ+
1 : (1, 1, 1, 0, 0, 0),

Γ+
3 : (1, 1,−2, 0, 0, 0), (

√
3,−
√

3, 0, 0, 0, 0),

Γ+
5 : (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1).

Next we find which irreps are associated with atomic displacements. The Na and Cl
atoms are at Wyckoff positions (a) and (b), respectively, in G1 = Fm3̄m. We first look at
the Γ irreps.

*VALUE WYCKOFF A B

*SHOW WYCKOFF

*SHOW MICROSCOPIC VECTOR

75
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*DISPLAY DISTORTION

Irrep (ML) Wyckoff Point Projected Vectors

GM4- a (0,0,0) (1,0,0), (0,1,0), (0,0,1)

GM4- b (1/2,1/2,1/2) (1,0,0), (0,1,0), (0,0,1)

*

Only the Γ−4 irrep allows atomic displacements Each site has a point-group symmetry
consisting of all space-group operators that leave that site fixed. We find the point-group
irreps for the Wyckoff (a) and (b) sites that allow atomic displacements.

*VALUE IRREP GM4-

*SHOW FREQUENCY

*DISPLAY IRREP

Irrep (ML) Frequency

GM4- a 1 T1u

b 1 T1u

*

In both cases, atomic displacements are only allowed by the point group irrep T1u. A
space-group irrep of Fm3̄m will allow atomic displacements if and only if its
decomposition, when restricted to elements of a site point group, contains the point-group
irrep T1u (nonzero subduction frequency). We make a list of such space-group irreps. We
restrict the list to irreps at k points of symmetry, since these are the only ones we are
likely to encounter in this case study. Note that we have edited the following output from
isotropy. We have removed space-group irreps which do not contain T1u.

*CANCEL VALUE IRREP

*VALUE KDEGREE 0

*DISPLAY IRREP

Irrep (ML) Frequency

GM4- a 1 T1u

b 1 T1u

L1+ a 1 A1g, 1 T2g

b 1 A2u, 1 T1u

L3+ a 1 Eg, 1 T2g, 1 T1g

b 1 Eu, 1 T2u, 1 T1u

L2- a 1 A2u, 1 T1u

b 1 A1g, 1 T2g

L3- a 1 Eu, 1 T2u, 1 T1u

b 1 Eg, 1 T2g, 1 T1g

X3- a 1 T1u

b 1 T1u

X5- a 1 T2u, 1 T1u

b 1 T2u, 1 T1u

W1 a 1 A1g, 1 Eg, 1 T2u

b 1 A2g, 1 Eg, 1 T1u

W2 a 1 A2g, 1 Eg, 1 T1u
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b 1 A1g, 1 Eg, 1 T2u

W5 a 1 T2g, 1 T1g, 1 T2u, 1 T1u

b 1 T2g, 1 T1g, 1 T2u, 1 T1u

*

We see that only irreps Γ−4 , L+
1 , L+

3 , L−2 , L−3 , X−3 , X−5 , W1, W2, W5 allow atomic
displacements in NaCl.

R3̄m Path

Buerger proposed a path with space group symmetry G = R3̄m. In terms of the
orthogonal lattice vectors of G1, the hexagonal lattice vectors of G are given by

( 1
2 , 0,

1
2 ), (0, 12 ,

1̄
2 ), (1̄, 1, 1).

In the hexagonal unit cell of R3̄m, the Na atoms are at the Wyckoff (a) position, (0,0,0),
and the Cl atoms are at the Wyckoff (b) position, (0, 0, 12 ). Since there is a Na atom at
the origin in both G1 and G, we can choose the origins of both G1 and G to be at the
same point. We first find the irreps and order parameters associated with the transition
G1 → G.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 225

*VALUE SUBGROUP 166

*VALUE BASIS 1/2,0,1/2 0,1/2,-1/2 -1,1,1

*VALUE ORIGIN 0,0,0

*DISPLAY DIRECTION

Irrep (ML) Dir

GM1+ (a)

GM5+ (a,-a,a)

*

There are two irreps involved, Γ+
1 and Γ+

5 . They both allow strain. Neither one allows
atomic displacements. There are no atomic displacements with respect to the unit cell in
the transition along the R3̄m path, only strain. The strains are

Γ+
1 : (a, a, a, 0, 0, 0),

Γ+
5 : (0, 0, 0, a, ā, a).

P21/m path

This is a modification of the R3̄m path where more distortion is allowed along the path.
In terms of the orthogonal lattice vectors of G1, the monoclinic lattice vectors of G are
given by

( 1
2 , 1,

1̄
2 ), ( 1̄

2 , 0,
1̄
2 ), ( 1̄

2 , 0,
1
2 ).



78 Case Study 3: Reconstructive Phase Transition in NaCl

In the monoclinic unit cell of P21/m, the Na atoms are at the Wyckoff (e) position,
( 1
4 ,

1
4 , 0), and the Cl atoms are at the Wyckoff (e) position, ( 3

4 ,
1
4 ,

1
2 ). The orthogonal

coordinates of the Na atom are

1
4 ( 1

2 , 1,
1̄
2 ) + 1

4 ( 1̄
2 , 0,

1̄
2 ) = (0, 14 ,

1̄
4 ),

so the origin of G with respect to G1 can be chosen to be at (0, 1̄4 ,
1
4 ). We find the irreps

and order parameters associated with the transition to P21/m.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 225

*VALUE SUBGROUP 11

*VALUE BASIS 1/2,1,-1/2 -1/2,0,-1/2 -1/2,0,1/2

*VALUE ORIGIN 0,-1/4,1/4

*DISPLAY DIRECTION

Irrep (ML) Dir

GM1+ (a)

GM3+ (a,-1.732a)

GM4+ (a,0,a)

GM5+ (a,-a,b)

X2- (a,0,0)

X3- (a,0,0)

X5- (a,0,0,0,0,0)

*

The irreps Γ+
1 , Γ+

3 , Γ+
5 allow strain. We obtain

Γ+
1 : (a, a, a, 0, 0, 0),

Γ+
3 : a(1, 1,−2, 0, 0, 0)−

√
3a(
√

3,−
√

3, 0, 0, 0, 0) = (2ā, 4a, 2ā, 0, 0, 0),

Γ+
5 : (0, 0, 0, a, ā, b).

The irreps X−3 and X−5 allow atomic displacements. To find the displacements, we need
to first find the order parameters in the data base. We edit the output of isotropy
below, leaving only the line containing the order parameter we are looking for.

*CANCEL VALUE SUBGROUP

*SHOW IRREP

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*VALUE IRREP X3-

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir

X3- 129 P4/nmm P1 (a,0,0)

*VALUE IRREP X5-

*DISPLAY ISOTROPY
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Irrep (ML) Subgroup Dir

X5- 59 Pmmn P1 (a,0,0,0,0,0)

*

We see that the order parameter for X−3 and X−5 are both labeled P1 in the data base.
We now obtain the atomic displacements.

*VALUE WYCKOFF A B

*SHOW MICROSCOPIC VECTOR

*SHOW WYCKOFF

*VALUE IRREP X3-

*VALUE DIRECTION P1

*DISPLAY DISTORTION

Irrep (ML) Dir Wyckoff Point Projected Vectors

X3- P1 a (0,0,0) (0,1,0)

(0,1/2,1/2) (0,-1,0)

X3- P1 b (1/2,1/2,1/2) (0,1,0)

(1/2,1,1) (0,-1,0)

*VALUE IRREP X5-

*DISPLAY DISTORTION

Irrep (ML) Dir Wyckoff Point Projected Vectors

X5- P1 a (0,0,0) (1,0,-1)

(0,1/2,1/2) (-1,0,1)

X5- P1 b (1/2,1/2,1/2) (1,0,-1)

(1/2,1,1) (-1,0,1)

*

Pmmn Path

Watanabe proposed a path with space group symmetry G = Pmmn. In terms of the
orthogonal lattice vectors of G1, the orthorhombic lattice vectors of G are given by

(1, 0, 0), (0, 12 ,
1̄
2 ), (0, 12 ,

1
2 ).

In the orthorhombic unit cell of Pmmn, the Na atoms are at the Wyckoff (a) position,
( 1
4 ,

1
4 ,

3
4 ), and the Cl atoms are at the Wyckoff (b) position, ( 1

4 ,
3
4 ,

1
4 ). The orthogonal

coordinates of the Na atom are

1
4 (1, 0, 0) + 1

4 (0, 12 ,
1̄
2 ) + 3

4 (0, 12 ,
1
2 ) = (1

4 ,
1
2 ,

1
4 ),

so the origin of G with respect to G1 can be chosen to be at ( 1̄
4 ,

1̄
2 ,

1̄
4 ). We find the irreps

and order parameters associated with the transition to Pmmn. Note that the atomic
positions in Pmmn are given for the space group setting with origin choice 2, which is
the default setting in isotropy.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 225
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*VALUE SUBGROUP 59

*VALUE BASIS 1,0,0 0,1/2,-1/2 0,1/2,1/2

*VALUE ORIGIN -1/4,-1/2,-1/4

*DISPLAY DIRECTION

Irrep (ML) Dir

GM1+ (a)

GM3+ (a,1.732a)

GM5+ (0,a,0)

X5- (0,0,0,0,0,a)

*

The irreps Γ+
1 , Γ+

3 , Γ+
5 allow strain. We obtain

Γ+
1 : (a, a, a, 0, 0, 0),

Γ+
3 : a(1, 1,−2, 0, 0, 0) +

√
3a(
√

3,−
√

3, 0, 0, 0, 0) = (4a, 2ā, 2ā, 0, 0, 0),

Γ+
5 : (0, 0, 0, 0, a, 0).

The irrep X−5 allows atomic displacements. To find the displacements, we need to first
find the order parameter in the data base. Since the order parameter only contains one
variable a, we edit the following output of isotropy and show only those order
parameters that contain one variable.

*CANCEL VALUE SUBGROUP

*SHOW IRREP

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*VALUE IRREP X5-

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir

X5- 59 Pmmn P1 (a,0,0,0,0,0)

X5- 63 Cmcm P2 (a,a,0,0,0,0)

X5- 155 R32 P6 (a,0,a,0,a,0)

X5- 160 R3m P7 (0,a,0,a,0,a)

X5- 129 P4/nmm P9 (a,a,a,-a,0,0)

X5- 136 P4_2/mnm P10 (a,a,0,0,a,-a)

X5- 198 P2_13 P11 (a,a,a,a,a,a)

*

We do not find (0, 0, 0, 0, 0, a) in the above output. We must look at domains. Let us first
try the direction P1. We edit the following output of isotropy, showing only the line
with the order parameter we are looking for.

*VALUE DIRECTION P1

*SHOW DOMAINS

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir
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X5- 10 59 Pmmn P1 (0,0,0,0,0,a)

*

We see that the order parameter belongs to the 10th domain of P1. We now obtain the
atomic displacements.

*CANCEL SHOW DOMAINS

*VALUE WYCKOFF A B

*SHOW MICROSCOPIC VECTOR

*SHOW WYCKOFF

*VALUE IRREP X5-

*VALUE DOMAIN 10

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Wyckoff Point Projected Vectors

X5- P1 10 a (0,0,0) (0,1,1)

(-1/2,1/2,0) (0,-1,-1)

X5- P1 10 b (1/2,1/2,1/2) (0,1,1)

(0,1,1/2) (0,-1,-1)

*

C2 Path

This path is not as energetically favorable as those proposed by Buerger and Watanabe.
We include it as an example of a more complex situation. In terms of the orthogonal
lattice vectors of G1, the monoclinic lattice vectors of G = C2 are given by

( 1
2 , 1̄,

1̄
2 ), ( 1

2 , 0,
1
2 ), ( 1̄

2 , 1̄,
1
2 ).

In the monoclinic unit cell of C2, the Na atoms are at the Wyckoff (a) position (0, 0, 0)
and the Wyckoff (b) position (0, 12 ,

1
2 ), and the Cl atoms are at the Wyckoff (c) position

( 1
4 ,

1
2 ,

3
4 ). Since there is a Na atom at the origin in both G1 and G, we can choose the

origins of both G1 and G to be at the same point. We find the irreps and order
parameters associated with the transition to C2. Note that the lattice vectors and atomic
positions in C2 are given for the space group setting with unique axis b and cell choice 1,
which is the default setting in isotropy.

*CANCEL VALUE ALL

*CANCEL SHOW ALL

*VALUE PARENT 225

*VALUE SUBGROUP 5

*VALUE BASIS 1/2,-1,-1/2 1/2,0,1/2 -1/2,-1,1/2

*VALUE ORIGIN 0,0,0

*DISPLAY DIRECTION

Irrep (ML) Dir

GM1+ (a)

GM3+ (a,-1.732a)

GM4+ (a,0,a)

GM5+ (a,-a,b)
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GM1- (a)

GM3- (a,0.577a)

GM4- (a,0,a)

GM5- (a,-a,b)

L1+ (0,a,0,0)

L3+ (0,0,a,-0.268a,0,0,0,0)

L1- (0,a,0,0)

L3- (0,0,a,3.732a,0,0,0,0)

*

The irreps Γ+
1 , Γ+

3 , Γ+
5 allow strain. We obtain

Γ+
1 : (a, a, a, 0, 0, 0),

Γ+
3 : a(1, 1,−2, 0, 0, 0)−

√
3a(
√

3,−
√

3, 0, 0, 0, 0) = (2ā, 4a, 2ā, 0, 0, 0),

Γ+
5 : (0, 0, 0, a, ā, b).

The irreps Γ−4 , L+
1 , L+

3 , L−3 allow atomic displacements. To find the displacements, we
need to first find the order parameter in the data base. Since each of these order
parameters only contains one variable a, we edit the following output of isotropy and
show only those order parameters that contain one variable. First, we consider Γ−4 .

*CANCEL VALUE SUBGROUP

*SHOW IRREP

*SHOW SUBGROUP

*SHOW DIRECTION VECTOR

*VALUE IRREP GM4-

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir

GM4- 107 I4mm P1 (a,0,0)

GM4- 44 Imm2 P2 (a,a,0)

GM4- 160 R3m P3 (a,a,a)

*

The order parameter (a, 0, a) is not in the list. As before, we look at domains. We first
try P2, since it looks similar to (a, 0, a). We edit the following output of isotropy,
showing only the line with the order parameter we are looking for.

*VALUE DIRECTION P2

*SHOW DOMAINS

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

GM4- 5 44 Imm2 P2 (a,0,a)

*

The order parameter belongs to the 5th domain of P5. Next we consider L+
1 .

*CANCEL SHOW DOMAINS
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*CANCEL VALUE DIRECTION

*VALUE IRREP L1+

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir

L1+ 166 R-3m P1 (a,0,0,0)

L1+ 65 Cmmm P3 (a,a,0,0)

L1+ 225 Fm-3m P11 (a,a,a,a)

L1+ 227 Fd-3m P12 (a,a,a,-a)

*VALUE DIRECTION P1

*SHOW DOMAINS

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

L1+ 4 166 R-3m P1 (0,a,0,0)

*

The order parameter belongs to the 4th domain of P1. Next we consider L+
3 .

*CANCEL SHOW DOMAINS

*CANCEL VALUE DIRECTION

*VALUE IRREP L3+

*DISPLAY ISOTROPY

Irrep (ML) Subgroup Dir

L3+ 12 C2/m P2 (a,a,0,0,0,0,0,0)

L3+ 15 C2/c P7 (a,-a,0,0,0,0,0,0)

L3+ 65 Cmmm P8 (a,a,a,a,0,0,0,0)

L3+ 67 Cmma P14 (a,-a,a,-a,0,0,0,0)

L3+ 139 I4/mmm P15 (a,a,a,a,a,a,a,a)

L3+ 141 I4_1/amd P16 (a,a,a,a,a,a,-a,-a)

L3+ 140 I4/mcm P19 (a,-a,a,-a,a,-a,a,-a)

L3+ 142 I4_1/acd P20 (a,-a,a,-a,a,-a,-a,a)

L3+ 167 R-3c P21 (a,3.732a,3.732a,a,2.732a,-2.732a,0,0)

L3+ 166 R-3m P22 (a,a,0,0,1.366a,-0.366a,0.366a,-1.366a)

*VALUE DIRECTION P2

*SHOW DOMAINS

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

L3+ 20 12 C2/m P2 (0,0,1.366a,-0.366a,0,0,0,0)

*

We find for the 20th domain,
(0, 0, 1.366a,−0.366a, 0, 0, 0, 0) = 1.366(0, 0, a,−0.268a, 0, 0, 0, 0), which is same as the
one we are looking for, to within an arbitrary multiplier. Next we consider L−3 .

*CANCEL SHOW DOMAINS

*CANCEL VALUE DIRECTION

*VALUE IRREP L3-

*DISPLAY ISOTROPY
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Irrep (ML) Subgroup Dir

L3- 12 C2/m P2 (a,a,0,0,0,0,0,0)

L3- 15 C2/c P7 (a,-a,0,0,0,0,0,0)

L3- 65 Cmmm P8 (a,a,a,a,0,0,0,0)

L3- 67 Cmma P14 (a,-a,a,-a,0,0,0,0)

L3- 139 I4/mmm P15 (a,a,a,a,a,a,a,a)

L3- 141 I4_1/amd P16 (a,a,a,a,a,a,-a,-a)

L3- 140 I4/mcm P19 (a,-a,a,-a,a,-a,a,-a)

L3- 142 I4_1/acd P20 (a,-a,a,-a,a,-a,-a,a)

L3- 167 R-3c P21 (a,3.732a,3.732a,a,2.732a,-2.732a,0,0)

L3- 166 R-3m P22 (a,a,0,0,1.366a,-0.366a,0.366a,-1.366a)

*VALUE DIRECTION P2

*SHOW DOMAINS

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

L3- 1 12 C2/m P2 (a,a,0,0,0,0,0,0)

2 12 C2/m (0,0,0,0,a,a,0,0)

3 12 C2/m (0,0,0,0,0,0,a,a)

4 12 C2/m (0,0,a,a,0,0,0,0)

5 12 C2/m (-1.366a,0.366a,0,0,0,0,0,0)

6 12 C2/m (0,0,0,0,-1.366a,0.366a,0,0)

7 12 C2/m (0,0,0,0,0,0,-1.366a,0.366a)

8 12 C2/m (0,0,-1.366a,0.366a,0,0,0,0)

9 12 C2/m (0.366a,-1.366a,0,0,0,0,0,0)

10 12 C2/m (0,0,0,0,0.366a,-1.366a,0,0)

11 12 C2/m (0,0,0,0,0,0,0.366a,-1.366a)

12 12 C2/m (0,0,0.366a,-1.366a,0,0,0,0)

13 12 C2/m (-a,-a,0,0,0,0,0,0)

14 12 C2/m (0,0,0,0,-a,-a,0,0)

15 12 C2/m (0,0,0,0,0,0,-a,-a)

16 12 C2/m (0,0,-a,-a,0,0,0,0)

17 12 C2/m (1.366a,-0.366a,0,0,0,0,0,0)

18 12 C2/m (0,0,0,0,1.366a,-0.366a,0,0)

19 12 C2/m (0,0,0,0,0,0,1.366a,-0.366a)

20 12 C2/m (0,0,1.366a,-0.366a,0,0,0,0)

21 12 C2/m (-0.366a,1.366a,0,0,0,0,0,0)

22 12 C2/m (0,0,0,0,-0.366a,1.366a,0,0)

23 12 C2/m (0,0,0,0,0,0,-0.366a,1.366a)

24 12 C2/m (0,0,-0.366a,1.366a,0,0,0,0)

*VALUE DIRECTION P7

*DISPLAY ISOTROPY

Irrep (ML) Domain Subgroup Dir

L3- 8 15 C2/c P7 (0,0,0.366a,1.366a,0,0,0,0)

*
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We could not find the order parameter among the domains of P2. Instead, we found it in
the 8th domain of P7. Now we can find the atomic displacements.

*CANCEL SHOW DOMAINS

*VALUE WYCKOFF A B

*SHOW MICROSCOPIC VECTOR

*SHOW WYCKOFF

*VALUE IRREP GM4-

*VALUE DIRECTION P2

*VALUE DOMAIN 5

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Wyckoff Point Projected Vectors

GM4- P2 5 a (0,0,0) (1,0,1)

GM4- P2 5 b (1/2,1/2,1/2) (1,0,1)

*VALUE IRREP L1+

*VALUE DIRECTION P1

*VALUE DOMAIN 4

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Wyckoff Point Projected Vectors

L1+ P1 4 b (1/2,1/2,1/2) (-1,-1,1)

(-1/2,-1/2,3/2) (1,1,-1)

*VALUE IRREP L3+

*VALUE DIRECTION P2

*VALUE DOMAIN 20

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Wyckoff Point Projected Vectors

L3+ P2 20 b (1/2,1/2,1/2) (-0.732,1.464,0.732)

(0,0,1/2) (0.732,-1.464,-0.732)

*VALUE IRREP L3-

*VALUE DIRECTION P7

*VALUE DOMAIN 8

*DISPLAY DISTORTION

Irrep (ML) Dir Domain Wyckoff Point Projected Vectors

L3- P7 8 a (0,0,0) (1.268,0,1.268)

(-1/2,-1/2,0) (-1.268,0,-1.268)

*

This is the end of this case study. You may exit the program:

*QUIT
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Case Study 4: Spin Reorientation Transitions in FePO4 and Fe3O4

Contribution by Christopher J. Howard, University of Newcastle, Australia

This case study concerns the application of isotropy to examine the magnetic
structures and magnetic phase transitions in iron phosphate, FePO4, and hematite,
α-Fe2O3. Both these compounds crystallize in the trigonal system.

Below about 950 K, hematite is antiferromagnetic (actually, weakly ferromagnetic), and
at room temperature the magnetic moments are thought to lie, at least approximately, in
the “basal” plane, i.e., the plane perpendicular to the three-fold axis. Within a given
plane, the moments on the Fe3+ are parallel, but essentially antiparallel to moments in
adjacent planes. A spin reorientation, known as the Morin transition [F. J. Morin, Phys.
Rev. 78, 819–820 (1950)] occurs at about 265 K. Below this temperature the moments
are perpendicular to the basal plane.

Iron phosphate is not magnetically ordered at room temperature, but at 24 K, it becomes
antiferromagnetic with moments lying in the basal plane, and at 17 K, it then shows a
spin reorientation akin to the Morin transition. Below 17 K, the moments are
perpendicular to the basal plane.

First we consider the case of FePO4. The space group for the room temperature
structure is No. 152 P3121 and the magnetic Fe3+ ion is at Wyckoff position 3a. At the
onset of magnetic ordering, the unit cell is doubled along the direction of the three-fold
axis [Battle et al., J, Phys. C 15, L919-L924 (1982)], so we look for irreps at k = 0, 0, 12 .

*VALUE PARENT 152

*SHOW KPOINT

*DISPLAY KPOINT

k vector

GM (0,0,0)

DT (0,0,a)

LD (a,a,0)

SM (a,0,0)

A (0,0,1/2)

H (1/3,1/3,1/2)

K (1/3,1/3,0)

L (1/2,0,1/2)

M (1/2,0,0)

P (1/3,1/3,a)

Q (a,a,1/2)

R (a,0,1/2)

U (1/2,0,a)

B (a,b,0)

C (a,a,b)

D (a,0,b)

E (a,b,1/2)

GP (a,b,g)

87
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*

From the above, we identify k = 0, 0, 12 as the A-point of the Brillouin zone. Accordingly,
we look for the magnetic ordering induced by irreps at the A-point. Note that magnetic
moment is an axial or pseudo vector.

*CANCEL SHOW KPOINT

*VALUE KPOINT A

*VALUE WYCKOFF A

*SHOW IRREP

*SHOW MICROSCOPIC VECTOR PSEUDO

*DISPLAY DISTORTION

Irrep (ML) Point Projected Pseudo Vectors

A1 (x,0,1/3) (1,0,0)

(x,0,4/3) (-1,0,0)

(0,x,2/3) (0,-1,0)

(0,x,5/3) (0,1,0)

(-x,-x,1) (-1,-1,0)

(-x,-x,2) (1,1,0)

A2 (x,0,1/3) (0.577,1.155,0)

(x,0,4/3) (-0.577,-1.155,0)

(0,x,2/3) (1.155,0.577,0)

(0,x,5/3) (-1.155,-0.577,0)

(-x,-x,1) (0.577,-0.577,0)

(-x,-x,2) (-0.577,0.577,0)

A2 (x,0,1/3) (0,0,1)

(x,0,4/3) (0,0,-1)

(0,x,2/3) (0,0,-1)

(0,x,5/3) (0,0,1)

(-x,-x,1) (0,0,1)

(-x,-x,2) (0,0,-1)

A3 (x,0,1/3) (1,0,0), (0,0,0)

(x,0,4/3) (-1,0,0), (0,0,0)

(0,x,2/3) (0,0.500,0), (0,-0.866,0)

(0,x,5/3) (0,-0.500,0), (0,0.866,0)

(-x,-x,1) (0.500,0.500,0), (0.866,0.866,0)

(-x,-x,2) (-0.500,-0.500,0), (-0.866,-0.866,0)

A3 (x,0,1/3) (0,0,0), (0.577,1.155,0)

(x,0,4/3) (0,0,0), (-0.577,-1.155,0)

(0,x,2/3) (-1,-0.500,0), (-0.577,-0.289,0)

(0,x,5/3) (1,0.500,0), (0.577,0.289,0)

(-x,-x,1) (0.500,-0.500,0), (-0.289,0.289,0)

(-x,-x,2) (-0.500,0.500,0), (0.289,-0.289,0)

A3 (x,0,1/3) (0,0,0), (0,0,1)

(x,0,4/3) (0,0,0), (0,0,-1)

(0,x,2/3) (0,0,0.866), (0,0,0.500)
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(0,x,5/3) (0,0,-0.866), (0,0,-0.500)

(-x,-x,1) (0,0,0.866), (0,0,-0.500)

(-x,-x,2) (0,0,-0.866), (0,0,0.500)

*

We examine the magnetic ordering associated with each of the irreps shown above. The
magnetic structures are best understood by sorting the “projected pseudo vectors” (i.e.,
magnetic moments) in order of increasing z coordinate, i.e., z = 1

3 ,
2
3 , 1,

4
3 ,

5
3 , 2, so that we

can see by inspection the direction of the magnetic moments in adjacent basal planes.

For irrep A1, the moments so sorted are (1, 0, 0), (0,−1, 0), (−1,−1, 0), (−1, 0, 0),
(0, 1, 0), (1, 1, 0). Bearing in mind that these vectors are given in hexagonal coordinates
(the parent is trigonal), we find that these moments lie in the basal plane and are rotated
by −60◦ between adjacent layers. This does not correspond to any known structure of
FePO4.

For irrep A2, there are two independent modes. (A2 appears twice in the irrep column of
the output.) The sequence in the second of these is (0, 0, 1), (0, 0,−1), (0, 0, 1), (0, 0,−1),
(0, 0, 1), (0, 0,−1). This is an arrangement with moments aligned along the three-fold
axis, the moments in adjacent layers pointing in opposite directions. This matches the
description of the structure of FePO4 below 17 K. The sequence in the first mode is
(1,2,0), (2,1,0), (1,−1, 0), (−1,−2, 0), (−2,−1, 0), (−1, 1, 0) (removing a common factor
of 0.577). This is identical to the arrangement produced by A1, rotated by 90◦. In
principle, A2 leads to a superposition of these two modes, so that the moments are not
constrained by symmetry to lie along the three-fold axis as described. However, it is
often argued that the form of the exchange interaction favors parallel or antiparallel
arrangement of spins, in which case the second mode would be most strongly favored.

The irrep A3 is two-dimensional and generates three independent modes. First we will
set the order parameter to (a,0), direction P1, so that we need consider only the first
component of each mode. The sequences for the three modes are as follows:

z mode 1 mode 2 mode 3

1/3 (1, 0, 0) (0, 0, 0) (0, 0, 0)

2/3 (0, 1/2, 0) (−1,−1/2, 0) (0, 0,
√

3/2)

1 (1/2, 1/2, 0) (1/2,−1/2, 0) (0, 0,
√

3/2)

4/3 (−1, 0, 0) (0, 0, 0) (0, 0, 0)

5/3 (0,−1/2, 0) (1, 1/2, 0) (0, 0,−
√

3/2)

2 (−1/2,−1/2, 0) (−1/2, 1/2, 0) (0, 0,−
√

3/2)

In mode 1, the moments at z = 1/3 and z = 4/3 are constrained to lie parallel and
antiparallel to the a axis, and there is no contribution here from the other modes. It will
be seen later that this constraint is due to the fact that these moments lie along a
two-fold axis. The moments at other z-values are not so constrained by symmetry. It is
worth noting however that a 1:1 combination of modes 1 and 2 will lead to the sequence
(1,0,0), (−1, 0, 0), (1,0,0), (−1, 0, 0), (1,0,0), (−1, 0, 0) which may be favored by the
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physics of the situation and which is in accord with the structure suggested for the range
17–24 K.

If we set the order parameter to (0, a), direction P2, there are no longer any moments
constrained by lying on two-fold axes. However a 1:1 combination of modes 1 and 2 will
give another alternating sequence (1,2,0), (−1,−2, 0), etc. This is another parallel and
antiparallel arrangement of moments, as suggested for 17–24 K, though the different
direction of the moments should be noted. The constraints on the directions of moments
are further reduced if we set the order parameter to (a, b), direction C1.

Next we list the magnetic structures produced by the action of these different A-point
irreps:

*SET MAGNETIC

*SHOW PARENT

*SHOW SUBGROUP

*SHOW BASIS

*SHOW ORIGIN

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

Parent Irrep Subgroup Dir Basis Vectors Origin

152.34 P3 1211’ A1 154.44 P c3 221 P1 (a) (1,0,0),(0,1,0),(0,0,2) (0,0,0)

152.34 P3 1211’ A2 154.44 P c3 221 P1 (a) (1,0,0),(0,1,0),(0,0,2) (0,0,1/2)

152.34 P3 1211’ A3 5.16 C c2 P1 (a,0) (-1,-2,0),(1,0,0),(0,0,2) (0,0,1/3)

152.34 P3 1211’ A3 5.16 C c2 P2 (0,a) (-1,-2,0),(1,0,0),(0,0,2) (0,0,5/6)

152.34 P3 1211’ A3 1.3 P S1 C1 (a,b) (0,1,0),(-1,0,0),(0,0,2) (0,0,0)

*

Based on the above analysis of magnetic moments, we would conclude that the magnetic
structure in the range 17 K to 24 K has the symmetry of Cc2 arising from irrep A3,
direction P1 or P2, and that below 17 K has the symmetry of Pc3221 arising from irrep
A2. The three-fold symmetry axis is evidently maintained under the action of irrep A2,
but it is not surprising that it cannot be maintained when moments are aligned
perpendicular to this axis as occurs under the action of irrep A3. Note that the two Cc2
structures differ in choice of origin.

The original purpose of this work was to obtain magnetic symmetries and to carry out
magnetic structure refinement using the program GSAS [A. C. Larson and R. B. von
Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory
Report LAUR 86-748 (2004)]. The first step is to express the FePO4 structure in the
settings of those symmetries prior to refinement. The new settings can be obtained using
the basis vectors and origin listed above. Currently isotropy in magnetic mode does not
do this, but if the same cell and origin can be found in its nonmagnetic mode then
isotropy can be used for this purpose. Recalling that Fe is at Wyckoff 3a, and noting
that P is at Wyckoff 3b and O at Wyckoff 6c, the structures in the new settings can be
obtained as indicated below. Consider the structure for irrep A2. We first check that the
nonmagnetic isotropy subgroup has the same basis vectors and origin as the magnetic
subgroup shown above.
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*SET NOMAGNETIC

*VALUE IRREP A2

*CANCEL SHOW IRREP

*CANCEL SHOW DIRECTION VECTOR

*VALUE WYCKOFF A B C

*DISPLAY ISOTROPY

Parent Subgroup Dir Basis Vectors Origin

152 P3 121 154 P3 221 P1 (1,0,0),(0,1,0),(0,0,2) (0,0,1/2)

*

It does, so we can proceed to obtain the atomic positions in the setting of the subgroup.

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW WYCKOFF SUBGROUP

*DISPLAY ISOTROPY

Parent Subgroup Dir Wyckoff New Wyckoff

152 P3 121 154 P3 221 P1 a c, x’=x, y’=0, z’=-1/12

b b, x’=x

a, x’=x

c c, x’=x, y’=y, z’=-1/4+1/2z

c, x’=-y, y’=x-y, z’=-1/12+1/2z

*

We do the same for irrep A3, first for direction P1.

*CANCEL SHOW WYCKOFF SUBGROUP

*VALUE IRREP A3

*VALUE DIRECTION P1

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Parent Subgroup Dir Basis Vectors Origin

152 P3 121 5 C2 P1 (1,2,0),(1,0,0),(0,0,-2) (0,0,1/3)

*

We note that these basis vectors are not exactly the same as those we obtained for the
magnetic subgroup, but we can force isotropy to use the basis vectors we want.

*VALUE BASIS -1,-2,0 1,0,0 0,0,2

*VALUE ORIGIN 0,0,1/3

*SHOW SUBGROUP ALTERNATE

*DISPLAY ISOTROPY

Parent Subgroup Alt Dir Basis Vectors Origin

152 P3 121 5 C2 yes P1 (-1,-2,0),(1,0,0),(0,0,2) (0,0,1/3)

*

The yes in the Alt column indicates that we were successful. Now we can obtain the
atomic positions in the setting of the subgroup.
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*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW WYCKOFF SUBGROUP

*DISPLAY ISOTROPY

Parent Subgroup Alt Dir Wyckoff New Wyckoff

152 P3 121 5 C2 yes P1 a a, y’=x

c, x’=-1/2x, y’=-1/2x, z’=1/6

‘ c, x’=1/2x, y’=-1/2x, z’=1/3

b, y’=x

b c, x’=0, y’=x, z’=1/4

c, x’=-1/2x, y’=-1/2x, z’=5/12

c, x’=-1/2x, y’=-1/2x, z’=11/12

c c, x’=-1/2y, y’=x-1/2y, z’=5/6+1/2z

c, x’=-1/2x+1/2y, y’=-1/2x-1/2y, z’=1/2z

c, x’=1/2x, y’=-1/2x+y, z’=1/6+1/2z

c, x’=-1/2y, y’=x-1/2y, z’=1/3+1/2z

c, x’=-1/2x+1/2y, y’=-1/2x-1/2y, z’=1/2+1/2z

c, x’=1/2x, y’=-1/2x+y, z’=2/3+1/2z

*

We repeat this also for direction P2.

*CANCEL SHOW WYCKOFF SUBGROUP

*VALUE DIRECTION P2

*VALUE ORIGIN 0,0,5/6

*SHOW BASIS

*SHOW ORIGIN

*DISPLAY ISOTROPY

Parent Subgroup Alt Dir Basis Vectors Origin

152 P3 121 5 C2 yes P2 (-1,-2,0),(1,0,0),(0,0,2) (0,0,5/6)

*CANCEL SHOW BASIS

*CANCEL SHOW ORIGIN

*SHOW WYCKOFF SUBGROUP

*DISPLAY ISOTROPY

Parent Subgroup Alt Dir Wyckoff New Wyckoff

152 P3 121 5 C2 yes P2 a c, x’=0, y’=x, z’=3/4

c, x’=-1/2x, y’=-1/2x, z’=11/12

c, x’=-1/2x, y’=-1/2x, z’=5/12

b a, y’=x

c, x’=-1/2x, y’=-1/2x, z’=1/6

c, x’=1/2x, y’=-1/2x, z’=1/3

b, y’=x

c c, x’=-1/2y, y’=x-1/2y, z’=7/12+1/2z

c, x’=-1/2x+1/2y, y’=-1/2x-1/2y, z’=3/4+1/2z

c, x’=1/2x, y’=-1/2x+y, z’=11/12+1/2z

c, x’=1/2y, y’=x-1/2y, z’=11/12-1/2z
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c, x’=-1/2x, y’=-1/2x+y, z’=7/12-1/2z

c, x’=1/2x-1/2y, y’=-1/2x-1/2y, z’=3/4-1/2z

*

The output shows the Wyckoff positions and the variable coordinates in the final
structures in terms of those in the parent structure. In the parent, the Fe and P are both
on special positions, Wyckoff a and b, respectively. As regards the two structures in Cc2,
it is interesting to note that the structure at origin (0,0,1/3) has some Fe atoms at special
positions Wyckoff a and b while the P are at what appear to be general positions, whereas
in the structure at origin (0,0,5/6) there are some P atoms at special positions and the
Fe atoms are at general positions. [Note that in the magnetic subgroup Cc2, (0, x, 1/4) is
at the Wyckoff position 4b (0, y, 1/4;mx, 0,mz) (see ISO-MAG Table at iso.byu.edu) so
that not all atoms at general points in C2 are at general points in Cc2.] We can use
isotropy to look at the site symmetries in both the parent and subgroup structures.

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*SHOW PARENT

*SHOW WYCKOFF POINTGROUP

*VALUE PARENT 152

*VALUE WYCKOFF A B C

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups

152 P3 121 a C2, b C2, c C1

*VALUE PARENT 5

*DISPLAY PARENT

Parent Wyckoff Points, Point Groups

5 C2 a C2, b C2, c C1

*

This confirms our earlier statement that for irrep A3, direction P1, giving the Cc2
structure with origin (0,0,1/3), some Fe atoms, those at Wyckoff a and b continue to lie
on two-fold axes in the lower symmetry magnetic structure.

We remark that care must be exercised in the application of GSAS to this kind of
problem. For example, the analysis in Cc2 is achieved by working in C2, the atoms at the
edge center being introduced by changing the setting of the parent structure into the
that of the larger magnetic cell as described, then constraining the positions and
magnetic moments on these edge centering atoms to obtain the desired results.

Now we move to a consideration of hematite, α-Fe2O3. There have been many studies on
hematite and its magnetic structures [C. G. Shull, W. A. Strauser & E. O. Wollan, Phys.
Rev. 83, 333–345, (1951); A. H. Morrish, Canted Antiferromagnetism: Hematite, World
Scientific, (1994); R. J. Harrison, Rev. Mineral. Geochem. 63, 113–143 (2006)]. There
are similarities with FePO4 in that both compounds show a spin reorientation transition
(in hematite, the Morin transition), but also differences in that Fe2O3 in its
higher-temperature magnetic phase displays weak ferromagnetism. The isotropy
analysis offers the opportunity to demonstrate additional features of the program.
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The space group for the parent high-temperature structure is No. 167, R3̄c, with the
magnetic Fe3+ ion at Wyckoff position 12c and the O2− ion at Wyckoff 18e. In this case
the magnetic unit cell is the same size as the conventional chemical unit cell, so the
magnetic ordering is associated with irreps at the Γ-point, k = 0, 0, 0. Ferromagnetism,
whether weak or otherwise, can arise from zone center (Γ-point) irreps but not from zone
boundary irreps as were active in the case of FePO4. This point can be made for
hematite using isotropy, on the basis that magnetic moment is a pseudo vector, i.e., a
pseudo tensor of rank 1.

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*VALUE PARENT 167

*VALUE KDEGREE 0

*VALUE RANK 1

*SHOW MACRO PSEUDO

*SHOW IRREP

*DISPLAY DISTORTION

Irrep (ML) Basis Functions

GM2+ z

GM3+ x,y

*

Evidently the only irreps that can give rise to a net ferromagnetic moment are Γ-point
irreps: GM2+ giving a magnetic moment along the three-fold axis, and GM3+ giving a
moment in the basal plane. Note that the x and y shown here refer to axes along and
perpendicular to the crystallographic a axis in the hexagonal setting of R3̄c.

In this example we will first list the magnetic space group symmetries of the different
structures produced by the action of GM irreps. (We omit showing the origin due to lack
of horizontal space.)

*SET MAGNETIC

*VALUE KPOINT GM

*SHOW SUBGROUP

*SHOW BASIS

*SHOW IRREP

*SHOW DIRECTION VECTOR

*DISPLAY ISOTROPY

Irrep Subgroup Dir Basis Vectors

GM1+ 167.103 R-3c P1 (a) (1,0,0),(0,1,0),(0,0,1)

GM2+ 167.107 R-3c’ P1 (a) (1,0,0),(0,1,0),(0,0,1)

GM3+ 15.85 C2/c P1 (a,-1.732a) (-2/3,-1/3,2/3),(0,-1,0),(2/3,1/3,1/3)

GM3+ 15.89 C2’/c’ P2 (a,0.577a) (-2/3,-1/3,2/3),(0,-1,0),(2/3,1/3,1/3)

GM3+ 2.4 P-1 C1 (a,b) (-1/3,-2/3,1/3),(-1/3,1/3,1/3),(-2/3,-1/3,-1/3)

GM1- 167.106 R-3’c’ P1 (a) (1,0,0),(0,1,0),(0,0,1)

GM2- 167.105 R-3’c P1 (a) (1,0,0),(0,1,0),(0,0,1)

GM3- 15.87 C2’/c P1 (a,-1.732a) (-2/3,-1/3,2/3),(0,-1,0),(2/3,1/3,1/3)
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GM3- 15.88 C2/c’ P2 (a,0.577a) (-2/3,-1/3,2/3),(0,-1,0),(2/3,1/3,1/3)

GM3- 2.6 P-1’ C1 (a,b) (-1/3,-2/3,1/3),(-1/3,1/3,1/3),(-2/3,-1/3,-1/3)

*

and then proceed to examine the moment arrangements in detail:

*VALUE WYCKOFF C

*SHOW MICROSCOPIC VECTOR PSEUDO

*DISPLAY DISTORTION

Irrep (ML) Point Projected Pseudo Vectors

GM1+ (0,0,z) (0,0,1)

(0,0,-z+1/2) (0,0,-1)

(0,0,-z) (0,0,1)

(0,0,z+1/2) (0,0,-1)

GM2+ (0,0,z) (0,0,1)

(0,0,-z+1/2) (0,0,1)

(0,0,-z) (0,0,1)

(0,0,z+1/2) (0,0,1)

GM3+ (0,0,z) (1,1,0), (-0.577,0.577,0)

(0,0,-z+1/2) (0,-1,0), (1.155,0.577,0)

(0,0,-z) (1,1,0), (-0.577,0.577,0)

(0,0,z+1/2) (0,-1,0), (1.155,0.577,0)

GM3+ (0,0,z) (0.577,-0.577,0), (1,1,0)

(0,0,-z+1/2) (1.155,0.577,0), (0,1,0)

(0,0,-z) (0.577,-0.577,0), (1,1,0)

(0,0,z+1/2) (1.155,0.577,0), (0,1,0)

GM1- (0,0,z) (0,0,1)

(0,0,-z+1/2) (0,0,-1)

(0,0,-z) (0,0,-1)

(0,0,z+1/2) (0,0,1)

GM2- (0,0,z) (0,0,1)

(0,0,-z+1/2) (0,0,1)

(0,0,-z) (0,0,-1)

(0,0,z+1/2) (0,0,-1)

GM3- (0,0,z) (1,1,0), (-0.577,0.577,0)

(0,0,-z+1/2) (0,1,0), (-1.155,-0.577,0)

(0,0,-z) (-1,-1,0), (0.577,-0.577,0)

(0,0,z+1/2) (0,-1,0), (1.155,0.577,0)

GM3- (0,0,z) (0.577,-0.577,0), (1,1,0)

(0,0,-z+1/2) (-1.155,-0.577,0), (0,-1,0)

(0,0,-z) (-0.577,0.577,0), (-1,-1,0)

(0,0,z+1/2) (1.155,0.577,0), (0,1,0)

*

Again, it will be useful to examine the moments in order of increasing z coordinate. It is
necessary, however, to take into account the fact that for each z listed above, the
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rhombohedral lattice places equivalent atoms at heights z + 1/3 and z + 2/3. Noting that
z ≈ 0.355, we find the sequence shown below:

z at equivalent position value with z = 0.355

(0, 0,−z) −z + 2/3 0.312

(0, 0, z) z 0.355

(0, 0,−z + 1/2) −z + 1/2 + 1/3 0.478

(0, 0, z + 1/2) z + 1/2 + 2/3− 1 0.522

The Fe3+ evidently lie in pairs of rather closely spaced layers, such that each pair of
layers can be and henceforth will be described as a single buckled layer. These pairs of
layers are separated from each other by a somewhat larger spacing.

Irrep GM1+ gives moments, when sorted as indicated, in the sequence (0,0,1), (0,0,1),
(0, 0,−1), (0, 0,−1), i.e., the moments lie along the z direction, all the moments in one
buckled layer pointing in one direction, and all the moments on the next pointing in the
opposite direction. This is reported to be the structure of hematite (magnetic symmetry
R3̄c) found below the Morin transition.

Irrep GM2+ shows all the moments as (0,0,1). It is a ferromagnetic structure, with
moments pointing in the z direction. This structure is not observed.

Irrep GM3+ is a two-dimensional irrep and induces two independent modes. First, we set
the order parameter to be (a,−a

√
3), direction P1, so that the magnetic space group is

C2/c. The resulting moments are given by the first vector in each mode added to −
√

3
times the second vector in each mode. The sequences for the two modes are as follows:

Mode 1 Mode 2

(0, 0,−z) 0.312 (2, 0, 0) (−2/
√

3,−4/
√

3, 0)

(0, 0, z) 0.355 (2, 0, 0) (−2/
√

3,−4/
√

3, 0)

(0, 0,−z + 1/2) 0.478 (−2,−2, 0) (2/
√

3,−2/
√

3, 0)

(0, 0, z + 1/2) 0.522 (−2,−2, 0) (2/
√

3,−2/
√

3, 0)

First we note that the moments in one buckled layer are all in the same direction, and
that they change direction from one buckled layer to the next. Secondly we see that the
moments lie in the basal plane. A pure antiferromagnetic structure, with moments
(−2,−1, 0) and (2, 1, 0) can be obtained by combining these modes in the ratio −

√
3 : 1.

There is no symmetry requirement for the modes to be combined in this ratio, and in
general they are not, a situation known as spin canting. This gives rise to “weak”
ferromagnetism. If we suppose that the modes are combined in the ratio α : β, we can
show that the moments in successive (buckled) layers are A(2, 1, 0) +B(0,−1, 0) and
A(−2,−1, 0) +B(0,−1, 0) where A = (α− β/

√
3)/2 and B = (α+ 3β/

√
3)/2 . If we set

α : β at −
√

3 : 1, we recover the pure antiferromagnetic structure just described,
otherwise we find a ferromagnetic component along (0,-1,0). This moment is at right
angles to the (2,1,0) directions of the antiferromagnetic moments and is also in accord
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with the results (ferromagnetic moment directions) given for GM3+ at the start of the
hematite analysis. The structure just described, including the weak ferromagnetism, is
considered to be the magnetic structure of hematite above the Morin transition.

A similar analysis can be carried out if we choose the order parameter to be (a, a/
√

3),
direction P2. Combining the modes again in the ratio −

√
3 : 1 gives a pure

antiferromagnetic structure with moments (0,1,0) and (0,−1, 0), and a canted magnetic
structure gives a ferromagnetic resultant along (2,1,0). The magnetic space group
symmetry is C2′/c′.

The structures arising from the irreps GM1−, GM2− and GM3− all have oppositely
directed moments within each buckled layer. Such structures are not observed and will
not be considered further here.

Finally, we develop the Landau potential and Gibbs free energy from the polynomial
Invariants for the structure above the Morin transition, where the primary irrep is
GM3+. We choose the order parameter for GM3+ to be in the P1 direction.

*CANCEL SHOW ALL

*CANCEL VALUE ALL

*VALUE PARENT 167

*VALUE IRREP GM1+ GM2+ GM3+

*VALUE DIRECTION P1 P1 P1

*DISPLAY INVARIANT

Deg Invariants

1 n1

2 n1^2

2 n2^2

2 n3^2

3 n1^3

3 n1n2^2

3 n1n3^2

3 n3^3

4 n1^4

4 n1^2n2^2

4 n2^4

4 n1^2n3^2

4 n2^2n3^2

4 n3^4

4 n1n3^3

*

Let Q1, Q2, Q3 be the magnetic order parameters n1,n2,n3 associated with irreps
GM1+,GM2+,GM3+.

The invariants above were obtained in the nonmagnetic mode, since isotropy does not
produce invariants in the magnetic mode. However, it is simple to extract the desired
magnetic invariants from the above list. The time reversal operator changes the sign of
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the order parameter, and since the terms in the polynomial expansion must be invariant
under all the operations of the parent space group, including time reversal, only the
invariants in even powers of the magnetic order parameters are retained. This means the
Landau potential, i.e., the expansion in powers of Q3, the primary order parameter, can
be written as

G = 1
2a(T − TN )Q2

3 + 1
4bQ

4
3 + · · · ,

where a and b are Landau coefficients, T is temperature, and TN the temperature (Neél
temperature) of the transition to the magnetically ordered phase.

We now examine how the magnetic distortions described by Q1 and Q2 couple to the
primary distortion Q3. We find from the isotropy output above the even-degree
polynomials which couple these parameters and include them in our expansion, which
becomes:

G = 1
2a(T − TN )Q2

3 + 1
4bQ

4
3 + λ5Q

2
1Q

2
3 + λ6Q1Q

3
3 + λ7Q

2
2Q

2
3 + · · · ,

where the λi are different coupling coefficients. Values for Q1 and Q2 are determined
from the equilibrium conditions, ∂G/∂Q1 = ∂G/∂Q2 = 0:

∂G

∂Q1
= 2λ5Q1Q

2
3 + λ6Q

3
3 = 0 gives Q1 = − λ6

2λ5
Q3,

whereas
∂G

∂Q2
= 2λ7Q2Q

2
3 = 0 gives Q2 = 0.

Thus, Q1 a secondary magnetic distortion and is proportional to Q3. Q2 is not a
secondary distortion in this case. If we choose the direction of the order parameter for
irrep GM3+ to be (0, a), then we find that Q2 appears as a secondary magnetic
distortion, but not Q1. It can be shown by similar means that there are no secondary
distortions associated with any of the irreps GM1−, GM2−, or GM3−.

The strains in this system transform according to irreps GM1+ and GM3+, so invariants
can be taken from the list above. The relevant terms are those linear in strain and
quadratic in the magnetic order parameter. The expansion including strain and order
parameter coupling has been developed [L. Oravova1, Z. Zhang, N. Church, R. J.
Harrison, C. J. Howard and M. A. Carpenter, J. Phys.: Condens. Matter 25, 259501,
(2013)].

This is the end of Case Study 4. You may exit the program:

*QUIT


